本文参考书目为《深入浅出图神经网络:GNN原理解析》
图滤波器
参考之前的学习笔记图神经网络学习笔记(1)——图信号与图傅里叶变换,图信号定义在图的节点上,图信号处理不仅需要考虑图的信号强度,也需要考虑图的拓扑结构。据参考书目,给出图滤波器定义(定义式参考逆图傅里叶变换,信号增强还是衰减通过h(λ)控制):
从算子的角度看,上式描述了一种作用在每个节点一阶子图上的变换操作。称满足上述性质的矩阵为图G的图位移算子(拉普拉斯矩阵与邻接矩阵都是典型的图位移算子)。
图滤波器具有以下性质:
(1)线性:H(x+y)=Hx+Hy
(2)滤波操作是顺序无关的:
用多项式逼近滤波器H,并对H的逼近式子进行泰勒展开有:
空域角度理解图滤波
由上知,利用多项式逼近滤波器H再对其做泰勒展开可以得到图滤波器H的多项式逼近形式,则其滤波形式可以如下式所示:
如果有如下设定:
则多项式逼近下的图滤波形式如下所示:
上式将图信号编程了K+1组的图信号线性加权,因为对于设定式子,L是图位移算子,所以有如下式子:
则有:
空域角度下,图滤波具有如下性质:
(1)具有局部性,每个节点的输出信号只需考虑其K阶子图;
(2)可通过K步迭代式的矩阵向量乘法完成滤波操作。
由于图空域滤波的局部性,H等价于一个聚合邻居的操作算子。
如参考书目中所给示例:
以图的邻接矩阵作为图滤波器,则根据输入图a,有滤波器形式如下:
又因为图a中,初试图信号强度为:
给定系数向量为:
根据式子:
有如下计算式:
带入计算得:
频域角度理解图滤波
参考之前的学习笔记图神经网络学习笔记(1)——图信号与图傅里叶变换,有:
则有:
通过该滤波器滤波,有:
上式子可以分解为三步:
(1)图傅里叶变换将图信号转化到频域空间,对应式子为:
(2)调节频率分量强度,得到频域下信号强度表示,对应式子为:
(3)通过逆傅里叶变换反解出滤波后图信号,对应式子为:
以上为图滤波器相关学习笔记。
鸽了很久,希望下一篇GCN可以尽快整理完,本系列主要是学习笔记,部分书中第一眼没看懂的地方,都通过查阅资料在博客中给出了较为细致(我看起来比较方便理解的解释…)的说明,仅供交流学习。