命题
命题存在的以及符号化的原因在于推理,所以将事件进行转化。
命题的定义
能判断真假的陈述句。
不满足简单命题的命题
命题的初级阶段组合:
联结词符
合式公式:
不仅可以代表常项也可以代表变项
具有多层层次,所以一个合式公式也可以叫做x层公式。
定义again:
赋值:让公式为真的值,成真赋值;让公式为假的赋值,成假赋值;
公式:所有赋值都是成真赋值,重言式;所有赋值都是成假赋值;矛盾式;有真有假,可满足式;
?微笑
出现一个公式判断方法(算是有点逻辑了—由公式到判断公式):真值表
定义again
真值函数:一个 n n n阶笛卡儿积到一阶的一个对应关系。跟函数有关系的定义
非要和别人比的命题
A跟B一样:等值关系,
推演过程:等值演算
怎么推演:通过等值式来推演;具体看书上P9
标准型公式–范式
层层嵌套:
仅有有限个命题变项或其否定的析取式:简单析取式(简单???)
由这些有限析取式合取而成:合取范式
重要定义:范式存在定理(任意公式必**存在(不唯一)**等值的范式)
针对简单析取式(合取式):
极小项:设有 n n n个命题变项,若在简单合取式中每个命题变项与其否定有且仅有一个出现一次,这样的简单合取式称为极小项。
极大项:设有 n n n个命题变项,若在简单析取式中每个命题变项与其否定有且仅有一个出现一次,这样的简单析取式称为极小项。
针对范式:
主析取范式:全是极小项组成的析取式
主合取范式:全是极大项组成的合取式
然后…这些定义有啥用:
- 判断俩命题公式是否等值:依据了主合取范式/主析取范式的唯一性
- 判断命题公式的类型:
公式的类型:矛盾式,重言式,可满足式
主析取范式
若含有 2 n 2^n 2n个极小项则为重言式
若不含有极小项则为矛盾式
求解真赋值
主合取范式
若含有 2 n 2^n 2n个极大项则为矛盾式
若不含有极大项则为重言式
求解成假赋值(所含极大项角码的二进制表示)
很有规律,所以其中的联系是什么?
- 主合取范式和主析取范式之间是对偶关系。
- p ∧ q ∧ r p\land q\land r p∧q∧r 000,记作 M 0 M_0 M0;
¬ p ∨ ¬ q ∧ ¬ r \neg p\lor \neg q\land \neg r ¬p∨¬q∧¬r 000,记作 m 0 m_0 m0
唉~一旦命题之间的关联性多了之后,那么对单个命题之间的联结词就开始了简单处理—联结词全功能集。
¬ ( p ∧ q ) \neg (p\land q) ¬(p∧q) , ↑ \uparrow ↑称为与非联结词
¬ ( p ∨ q ) \neg(p \lor q) ¬(p∨q), ↓ \downarrow ↓称为或非联结词
推理
公式与公式之间的一种关系:蕴涵 → \rightarrow →
证明这种关系下的公式为重言式的过程叫推理
注:
- A ⇒ B A \Rightarrow B A⇒B表示 A → B A \rightarrow B A→B重言式
- 推理正确不代表结论正确
如何推理:
推理定律P23
推理技巧P24
一阶逻辑
命题的一种拓展
命题知识一种比较简单的陈述,常常不足以表现人们想要表达的内容。
所以出现了一阶逻辑(谓词逻辑)。
对语言的一种数学描述
个体词、谓词、量词
1. 个体词
- 个体常项:表示具体或特定个体
- 个体变项:表示抽象或泛指个体
- 个体域(论域):个体变项的取值范围
- 全总个体域:宇宙间的一切事物
2. 谓词
- 谓词常项:表示具体性质或者关系的谓词(…是无理数)
- 谓词变项:表示抽象或泛指谓词
- 元数:谓词中包含的个体词数
- n n n元谓词:含 n ( n ≥ 1 ) n(n\ge 1) n(n≥1)个个体词的谓词;
- 0元谓词:不带个体变项的谓词( L ( a , b ) , a , b 都 是 个 体 常 项 L(a,b),a,b都是个体常项 L(a,b),a,b都是个体常项)
3.量词
- 全称量词: ∀ \forall ∀
- 存在量词: ∃ \exists ∃
逻辑命题的符号化 e n d ! end! end!
合式公式
合式公式的组成:
指导变项、量词的辖域、个体变项的自由出现和约束出现。
特别地,若合式公式中不存在自由出现的个体变项,则称为封闭的合式公式(闭式)
另:引入函数和谓词的类似赋值讨论-解释
解释
有了解释之后,就可以开始判断合式公式的真值。
公式的类型:逻辑有效式、矛盾式、可满足式
命题( A 0 A_0 A0)->谓词( A A A)(代换)
A A A是 A 0 A_0 A0的代换实例
非要和别人比的合式公式
等值式
除了24个命题中出现的等值式P9
量词否定式:
¬ ∀ x A ( x ) ⇔ ∃ x ¬ A ( x ) ; \neg \forall xA(x)\Leftrightarrow \exists x \neg A(x); ¬∀xA(x)⇔∃x¬A(x);
¬ ∃ x A ( x ) ⇔ ∀ x ¬ A ( x ) . \neg \exists xA(x) \Leftrightarrow \forall x \neg A(x). ¬∃xA(x)⇔∀x¬A(x).
量词辖域收缩/扩张等值式
∀ x ( A ( x ) ∨ B ) ⇔ ∀ x A ( x ) ∨ B ; \forall x(A(x) \lor B) \Leftrightarrow \forall xA(x) \lor B; ∀x(A(x)∨B)⇔∀xA(x)∨B;
∀ x ( A ( x ) ∧ B ) ⇔ ∀ x A ( x ) ∧ B ; \forall x(A(x)\land B)\Leftrightarrow\forall xA(x)\land B; ∀x(A(x)∧B)⇔∀xA(x)∧B;
∀ x ( A ( x ) → B ) ⇔ ∃ x A ( x ) → B ; \forall x(A(x)\rightarrow B)\Leftrightarrow\exists xA(x)\rightarrow B; ∀x(A(x)→B)⇔∃xA(x)→B;!
∀ x ( B → A ( x ) ) ⇔ B → ∀ x A ( x ) ; \forall x(B\rightarrow A(x))\Leftrightarrow B\rightarrow\forall xA(x); ∀x(B→A(x))⇔B→∀xA(x);
∃ x ( A ( x ) ∨ B ) ⇔ ∃ x A ( x ) ∨ B ; \exist x(A(x) \lor B) \Leftrightarrow \exists xA(x) \lor B; ∃x(A(x)∨B)⇔∃xA(x)∨B;
∃ x ( A ( x ) ∧ B ) ⇔ ∃ x A ( x ) ∧ B ; \exists x(A(x)\land B)\Leftrightarrow\exists xA(x)\land B; ∃x(A(x)∧B)⇔∃xA(x)∧B;
∃ x ( A ( x ) → B ) ⇔ ∀ x A ( x ) → B ; \exists x(A(x)\rightarrow B)\Leftrightarrow\forall xA(x)\rightarrow B; ∃x(A(x)→B)⇔∀xA(x)→B;!
∃ x ( B → A ( x ) ) ⇔ B → ∃ x A ( x ) ; \exists x(B\rightarrow A(x))\Leftrightarrow B\rightarrow\exists xA(x); ∃x(B→A(x))⇔B→∃xA(x);
注意:蕴含式中结合了 A → B ⇔ ¬ A ∧ B A\rightarrow B \Leftrightarrow \neg A \land B A→B⇔¬A∧B
量词分配等值式
∀ x ( A ( x ) ∧ B ( x ) ) ⇔ ∀ A ( x ) ∧ ∀ x B ( x ) \forall x(A(x)\land B(x))\Leftrightarrow \forall A(x)\land\forall xB(x) ∀x(A(x)∧B(x))⇔∀A(x)∧∀xB(x)
∃ x ( A ( x ) ∨ B ( x ) ) ⇔ ∃ A ( x ) ∨ ∃ x B ( x ) \exists x(A(x)\lor B(x))\Leftrightarrow \exists A(x)\lor\exists xB(x) ∃x(A(x)∨B(x))⇔∃A(x)∨∃xB(x)
任意合取,存在析取
范式
前束范式:
Q 1 x 1 Q 2 x 2 . . . Q k x k B Q_1x_1Q_2x_2...Q_kx_kB Q1x1Q2x2...QkxkB
B B B为不含量词的谓词(合式)公式
集合
集合是对事物的抽象,是一些事物的整体。
定义
对集合的相关定义:
子集(包含关系)、真子集、空集、全集( E / U E/U E/U)、幂集( ∣ P ( A ) ∣ = 2 n |P(A)| = 2^n ∣P(A)∣=2n)。
对**集合关系(谓词、事件)**的相关定义:
⊂ ⊆ ∈ ≠ \subset \subseteq \in \ne ⊂⊆∈=
定理
- 空集是唯一的
- 空集是一切集合的子集
集合间的运算
并( ∪ \cup ∪)、交( ∩ \cap ∩)、相对补( − - −)、绝对补( ∼ \sim ∼)、对称差( ⊕ \oplus ⊕)。
A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A\cup B = \left\{ x|x\in A \lor x\in B\right\} A∪B={ x∣x∈A∨x∈B}
A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } A\cap B = \left\{x |x \in A \land x \in B\right\} A∩B={ x∣x∈A∧x∈B}
A − B = { x ∣ x ∈ A ∧ x ∉ B } A - B = \left\{x|x \in A \land x \not\in B\right\} A−B={ x∣x∈A∧x∈B}
∼ A = E − A = { x ∣ x ∈ E ∧ x ∉ A } \sim A = E - A = \left\{x |x\in E \land x\not\in A\right\} ∼A=E−A={ x∣x∈E∧x∈A}
A ⊕ B = ( A − B ) ∪ ( B − A ) A\oplus B = (A-B)\cup(B - A) A⊕B=(A−B)∪(B−A)
集合运算的算律
表示法:文氏图
相关定律:
P60
吸收律;
德摩根律;
计数
包含排斥原理
∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ ; |A\cup B| =|A| + |B| - |A \cap B|; ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣;
元组序列和函数
有序数对
< x , y > ≠ < y , z > <x,y> \neq <y,z> <x,y>=<y,z>
有序 n n n元组
< x 1 , x 2 , x 3 . . . , x n > = < < x 1 , . . . , x n − 1 > , x n > <x_1,x_2,x_3...,x_n> = <<x_1,...,x_{n-1}>,x_n> <x1,x2,x3...,xn>=<<x1,...,xn−1>,xn>
笛卡尔积
A × B = { < x , y > ∣ x ∈ A ∧ y ∈ B } A\times B = \left\{ <x,y> |x\in A \land y \in B \right\} A×B={
<x,y>∣x∈A∧y∈B}
注:笛卡尔积只对 ∩ \cap ∩和 ∪ \cup ∪运算满足分配律。
证明过程:P77
看证明过程可以从本质上了解其分配律的合理性。
笛卡尔积产生关系集,一般只讨论二阶笛卡尔积也就是只讨论二元关系。
关系(Relationship)
如果一个集合为空集或者它的元素都是有序对,则称这个集合是一个二元关系,一般记作 R R R。若 < x , y > ∈ R , x R y <x,y>\in R, xRy <x,<