H100作为最新一代的高性能GPU,在多个关键性能指标上都优于H800和A100,尤其是在Tensor核心性能、显存带宽和互联能力方面。H800虽然在某些性能指标上不如H100,但相比A100仍有显著提升,且在特定应用场景中具有较高的性价比。A100则是上一代的高性能GPU,虽然性能稍逊于H100和H800,但在一些对性能要求不是极高的场景中仍具有较好的应用价值。以下是英伟达H100、H800、A100三款GPU的性能参数比对:
参数/特性 | H100 | H800 | A100 |
---|---|---|---|
架构 | Hopper | Hopper | Ampere |
晶体管数量 | 超过800亿 | 800亿 | 540亿 |
CUDA核心数量 | 18432 | 18432 | 6912 |
Tensor核心性能 | FP8 Tensor Core性能高达4000 TFLOPS | 优化后的Tensor核心,支持更高效的混合精度和稀疏矩阵运算,性能优于A100 | 提供312 TFLOPS的Tensor FP16性能 |
显存容量 | 80GB HBM3 | 80GB HBM2e或94GB HBM3 | 40GB或80GB HBM2 |
显存带宽 | 超过3TB/s | 2TB/s(HBM2e)或3.9TB/s(HBM3) | 1.6TB/s或2TB/s(取决于内存配置) |
多实例GPU(MIG) | 第二代MIG技术,可提高资源利用率 | 支持MIG技术,可将单个GPU划分为多个独立实例 | 支持MIG技术,可划分为多达7个GPU实例 |
互联技术 | 支持NVIDIA NVLink交换系统,可连接多达256个H100 GPU,提供高达900 GB/s的双向带宽 | 支持NVLink,但连接数量和带宽低于H100 | 支持第三代NVLink,最多可将16个A100 GPU以每秒600GB的速度互连 |
应用场景 | 适合大型语言模型、高性能计算、数据中心等对性能要求极高的场景 | 在AI训练和推理、高性能计算、图形处理与渲染等方面表现出色,性价比高 | 广泛应用于AI训练和推理、数据分析、高性能计算等领域 |
H100:性能最强,尤其在 Tensor 核心性能、显存容量和带宽方面表现卓越,适合对性能要求极高的场景,如大规模 AI 模型训练和高性能计算。
H800:性能仅次于 H100,性价比高,适合需要高性能但预算有限的场景。
A100:上一代高性能 GPU,性能稍逊于 H100 和 H800,但在一些对性能要求不是极高的场景中仍具有较好的应用价值