Python模拟Lagrange插值代码及结果
题目:exp(x)(函数可变)在[0,4]的n阶多项式插值及误差
思路
主要思路分为两部分:
- 如何计算n阶多项式插值?
- 误差如何计算?
首先第一个部分:
对于lagrange插值函数的计算,首先我们观察公式:
L n ( x ) = ∑ k = 0 n y k l k ( x ) L_n(x)=\sum\limits_{k=0}^n y_k l_k(x) Ln(x)=k=0∑nyklk(x)
其中, l k ( x ) = ( x − x 0 ) … ( x − x k − 1 ) ( x − x k + 1 ) … ( x k − x n ) ( x k − x 0 ) … ( x k − x k − 1 ) ( x k − x k + 1 ) … ( x k − x n ) l_k(x)=\frac{(x-x_0)\dots(x-x_{k-1})(x-x_{k+1})\dots(x_k-x_n)}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)} lk(x)=(xk−x0)…(xk−xk−1