百度版的“Coze”:零代码构建智能体,白嫖文心4.0大模型!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识,包括但不限于AI科普AI工具测评AI效率提升AI行业洞察。关注我,AI之路不迷路,2024我们一起变强。

国内AI领域的大玩家们都在干什么?前段时间是卷上下文长度,最近卷起了智能体

这里提到的智能体是什么?智能体,英文名为Agent,通俗来说,就是用于完成特定任务的AI机器人。这里最出名的莫过于OpenAI为ChatGPT推出的GPTs,作为ChatGPT插件的延伸,用户可以根据自己的需求以提示词的形式创建特定用途的聊天机器人。

GPTs are a new way for anyone to create a tailored version of ChatGPT to be more helpful in their daily life, at specific tasks, at work, or at home—and then share that creation with others.

当然,也包括我之前一直推荐的字节跳动推出的智能体平台Coze。Coze就是专注于智能体这件事的,在国内叫扣子(扣子的表现最近有所提升,后面我会专门写一篇文章讲解)。目前字节虽然收紧了Coze对GPT-4 API的使用数量,但还是可以免费使用GPT-4的,不失为一个好的选择。希望了解更多的小伙伴可以看我之前的这些文章:

  1. 白嫖GPT4,Dalle3和GPT4V - 字节开发的Coze初体验!附教程及提示词Prompt

  2. 当我们说“少即是多”时,我们在谈论新闻:让ChatGPT重塑你的新闻阅读

  3. 字节开发的Coze进阶使用:用免费的GPT4打造一个专属的新闻播报机器人!附教程及提示词Prompt

  4. 字节推出了“扣子”,国内版的Coze,但是我不推荐你用!

国内AI领域的“头号玩家”之一百度最近也迷上了智能体并且进行了大力推广。

虽然文心一言的表现不尽如人意,但那是特指文心3.5模型,而文心4.0模型的表现实测还是有所提高的,比GPT-4当然是有差距,但也基本上有GPT-3.5的水平了。之前如果想体验文心一言4.0,必须开通付费会员,价格是连续包月40元/月,非连续包月60元/月,使用数量限制为100条/3小时。而现在在百度开发的这个智能体平台上,创建的智能体是可以免费使用文心4.0大模型的,感兴趣的小伙伴可以根据下面的教程自行体验。

关于文心一言4.0的评测,可以看我这些文章:

  1. 文心一言4.0 VS ChatGPT4.0哪家强?!每月60块的文心一言4.0值得开吗?

  2. 文心一言4.0 VS ChatGPT4.0 图片生成能力大比拼!

  3. ChatGPT和文心一言哪个更好用?一道题告诉你答案!

百度文心智能体平台体验教程

注册登录

在网页端打开下面的地址,用百度账号登录即可。

体验地址:https://agents.baidu.com/

创建智能体

登录后点击立即进入,可以进入百度智能体平台的首页,可以看到,平台上的体验中心版块已经有各种功能的智能体了。

这个首页有没有似曾相识的感觉?没错,就是字节的Coze/扣子!

Coze首页

扣子首页

点击创建智能体

在百度智能体平台首页的左侧导航栏里点击创建智能体,可以在创建页面看到2种创建方式,这里直接选择零代码-立即创建即可。

输入名称和描述

在新页面里输入你想创建的智能体的名称和描述,即设定,这里简单描述即可,后面可以继续以提示词的形式详细规定智能体的功能。最后点击立即创建

这里为了演示,我创建了一个旅行助手的智能体。

详细配置

接下来需要详细配置你创建的这个智能体的功能。看到这个界面是不是也很眼熟?没错,这个配置页面和Coze/扣子的配置页面也非常像。

具体的配置教程可以看我之前的Coze的教程。

可以看到,在模型选择上,智能体统一配置了文心大模型4.0。

测试+发布

配置完成后,可以在右侧的对话框里进行对话,测试智能体的效果,根据反馈可以优化提示词。最后点击发布即可开始正式使用这个智能体。

智能体测试

总结

毕竟是可以免费使用的文心4.0大模型,还要啥自行车?


精选推荐

  1. 完全免费白嫖GPT4的三个方法,都给你整理好了!

  2. AI领域的国产之光,ChatGPT的免费平替:Kimi Chat!

  3. Kimi Chat,不仅仅是聊天!深度剖析Kimi Chat 5大使用场景!

  4. 我用AI工具5分钟制作一个动画微电影!这个AI现在免费!

  5. 当全网都在疯转OpenAI的Sora时,我们普通人能做哪些准备?——关于Sora,你需要了解这些!

  6. 文心一言4.0 VS ChatGPT4.0哪家强?!每月60块的文心一言4.0值得开吗?

  7. ChatGPT和文心一言哪个更好用?一道题告诉你答案!

  8. 字节推出了“扣子”,国内版的Coze,但是我不推荐你用!

  9. 白嫖GPT4,Dalle3和GPT4V - 字节开发的Coze初体验!附教程及提示词Prompt

  10. 2024年了你还在用百度翻译?手把手教会你使用AI翻译!一键翻译网页和PDF文件!


都读到这里了,点个赞鼓励一下吧,小手一赞,年薪百万!😊👍👍👍。关注我,AI之路不迷路,原创技术文章第一时间推送🤖。

### 构建执行目标识别的智能体 #### 使用Coze平台的优势 为了构建一个能够执行目标识别的智能体,选择合适的开发平台至关重要。Coze作为一个创新的海外聊天机器人开发平台,不仅简化了AI对话应用的创建过程,而且提供了丰富的功能集合,包括插件系统、工作流编辑、知识管理和长期记忆等特性[^3]。 #### 执行目标识别的具体算法和技术栈 对于目标识别任务而言,通常依赖于计算机视觉领域内的先进算法。这类任务往往涉及到卷积神经网络(Convolutional Neural Networks, CNNs),这是目前图像处理中最有效的技术之一。CNN可以自动提取特征并进行分类,在多个公开数据集上取得了优异的成绩。此外,还可以考虑集成预训练模型如YOLO (You Only Look Once),SSD (Single Shot MultiBox Detector) 或者 Faster R-CNN来加快开发进度和提高准确性。 #### 实现方式概述 在Coze平台上实现上述功能可以通过以下几个方面着手: - **利用现有API和服务**:许多云服务商都提供了易于接入的目标检测API接口,比如Google Cloud Vision API、Microsoft Azure Cognitive Services中的Custom Vision Service或是AWS Rekognition。这些服务已经内置了大量的高质量预训练模型,可以直接调用来完成特定场景下的物体识别需求。 - **自定义模型训练与部署**:如果应用场景较为特殊,则可以在本地环境中使用TensorFlow Object Detection API或其他类似的开源工具包来进行针对性更强的数据标注、模型训练等工作;之后再借助Coze所提供的低/零代码环境轻松地将训练好的模型封装成可交互的服务模块,并发布到各个社交平台或通讯渠道中去[^1]。 ```python import requests def detect_objects(image_url): api_key = 'your_api_key_here' url = f"https://vision.googleapis.com/v1/images:annotate?key={api_key}" payload = { "requests": [ { "image": {"source": {"imageUri": image_url}}, "features": [{"type_": "OBJECT_LOCALIZATION"}] } ] } response = requests.post(url, json=payload).json() objects = [] if 'responses' in response and len(response['responses']) > 0: annotations = response['responses'][0].get('localizedObjectAnnotations', []) for obj in annotations: objects.append({ 'name': obj.get('name'), 'score': obj.get('score') }) return objects ``` 此Python函数展示了如何通过调用外部API(这里以Google Cloud Vision为例)来获取图片内所含有的对象列表及其置信度得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值