一、二叉树的存储结构
1.顺序存储
简单常用的是双亲存储结构,用一维数组实现。
用数组下标表示树中结点,数组元素表示该结点的双亲结点
例如,下标为5对应的元素为3,则表明结点5的双亲结点为3;下标为1对应-1,表示1为根结点。
(注:0代表不存在的空结点)
2.链式存储
因为顺序存储空间利用率低,所以一般用链式存储。链式结构指用一个链表来存储一棵二叉树。
在二叉树种,结点结构通常包含若干数据域和若干指针域。通常为数据域 data , 左指针域 lchild和 右指针 rchild
typedef struct BiTNode{
ElemType data;
struct BiTNode *lchild,*rchild;
}
结论:在含有n个结点的二叉链表种,含有n+1个空链表
二、二叉树的遍历
二叉树的遍历分为 前序,中序,后序。 这个前中后指的是根的位置
(1)前序遍历(根左右)
void PreOrder(BiTree T){
if(T!=NULL){
visit(T); //访问根结点
PreOrder(T->lchild); //递归遍历左子树
PreOrder(T->rchild); //递归遍历右子树
}
}
(2)中序(左根右)
void InOrder(BiTree T){
if(T!=NULL){
InOrder(T->lchild); //递归遍历左子树
visit(T); //访问根结点
InOrder(T->rchild); //递归遍历右子树
}
}
(3)后序(左右根)
void PostOrder(BiTree T){
if(T!=NULL){
PostOrder(T->lchild); //递归遍历左子树
PostOrder(T->rchild); //递归遍历右子树
visit(T); //访问根结点
}
}
(上述遍历时间复杂为(O(n))
(4)非递归算法
- 先扫描根结点的所有左结点并依次入栈
- 出栈一个结点p*(此时*p无左孩子或左孩子均已访问过),访问它
- 扫描该结点的右孩子结点,将其进栈,再扫描该右孩子结点的所有左结点,并一一进栈
- 如此继续,直到栈空
void InOrderF(BitTree T){
InitStack(S);
BiTree p=T;
while(p||!IsEmpty(S)){ //栈非空或p不空时循环
if(p){ //根指针进展,遍历左子树
Push(S,p); //非空二叉树 先向左走
p=p->lchild;
}
else{
Pop(S,p); /根指针退栈,访问根结点,遍历右子树
visit(p); //退栈,访问根结点
p=p->rchild(); //再向右子树走
}
}
}
(5)层次遍历
按照层的顺序依次遍历,即图中箭头的方向。
需要借助队列来完成层次遍历。
先将二叉树根结点入队,然后出队,访问该结点,
若它有左子树,则将左子树根结点入队;
若它有右子树,则将右子树根结点入队。然后出队,对出队结点访问,重复直到队列为空
void LevelOrder(BiTree T){
InitQueue(Q);
BiTree p;
EnQueue(Q,T); //将根结点入队
while(!IsEmpty(Q)){
DeQueue(Q,p); //队头元素出队
visit(p);
if(p->lchild!=NULL)
EnQueue(Q,p->lchild); //左非空,左入队
if(p->rchild!=NULL){
EnQueue(Q,p->rchild); //右非空,右入队
}
}
}
(遍历二叉树实际将二叉树中的结点排列为一个先行序列,(除去第一个和最后一个)序列中每个结点都有直接前驱和直接后继)
由于二叉链表所表示的树存在许多空的指针,利用这些空指针存放指向其直接前驱或后继的指针)
三、线索二叉树
(1)基本概念
二叉树线索化时,规定:若无子树,令lchiild指向其前驱结点;若无右子树,令rchild指向其后继结点。
typedef struct ThreadNode{
ElemType data; //数据元素
struct ThreadNode *lchild,*rchild;// 左右孩子指针
int ltag,rtag; //左右线索标志
}ThreadNode,*ThreadTree;
(2)构造线索二叉树
步骤:1.遍历二叉树
2.每遍历一个结点,检查当前结点左右指针域是否为空
3.若为空,将他们改为指向前驱或后继结点的线索
//中序遍历队二叉树线索化的递归算法
void InThread(ThreadTree &p,ThreadTree &pre){
if(p!=NULL){
InThread(p->lchild,pre); //递归,线索化左子树
if(p->child==NULL){ //左子树为空
p->lchild=pre;
p->ltag=1;
}
if(pre!=NULL&&pre->rchild==NULL){
pre->rchild=p; //建立前驱结点的后继线索
pre->rtag=1;
}
pre=p; //标记当前结点成为刚刚访问过的结点
InThread(p->rchild,pre); //递归,线索化右子树
}
}
//中序建立线索二叉树
void CreateInThread(ThreadTree T){
ThreadTree pre=NULL;
if(T!=NULL){ //非空二叉树线索化
InThread(T,pre); //二叉树线索化
pre->rchild=NULL; //处理遍历的最后一个结点
pre->rtag=1;
}
}
总而言之,要点就是 遍历+线索
为了方便操作,所以再线索树上加一个头结点。
并令lchild域的指针指向二叉树的根结点,令其rchild域的指针指向中序遍历时访问的最后一个结点。
否则,令二叉树中序序列中的第一个结点的lchild域的指针和最后一个结点的rchild域的指针均指向头结点。