树(存储、遍历)

一、二叉树的存储结构

1.顺序存储

简单常用的是双亲存储结构,用一维数组实现。

用数组下标表示树中结点,数组元素表示该结点的双亲结点

例如,下标为5对应的元素为3,则表明结点5的双亲结点为3;下标为1对应-1,表示1为根结点。

(注:0代表不存在的空结点)

2.链式存储

因为顺序存储空间利用率低,所以一般用链式存储。链式结构指用一个链表来存储一棵二叉树。

在二叉树种,结点结构通常包含若干数据域和若干指针域。通常为数据域  data  ,  左指针域  lchild和 右指针 rchild

typedef struct BiTNode{

            ElemType data;

            struct  BiTNode  *lchild,*rchild;

}

结论:在含有n个结点的二叉链表种,含有n+1个空链表

二、二叉树的遍历

二叉树的遍历分为 前序,中序,后序。 这个前中后指的是根的位置

(1)前序遍历(根左右)

void PreOrder(BiTree T){
if(T!=NULL){
       visit(T);    //访问根结点
        PreOrder(T->lchild);      //递归遍历左子树
        PreOrder(T->rchild);        //递归遍历右子树
}
}

(2)中序(左根右)

void InOrder(BiTree T){
if(T!=NULL){
         InOrder(T->lchild);      //递归遍历左子树
         visit(T);    //访问根结点
         InOrder(T->rchild);        //递归遍历右子树
}
}

(3)后序(左右根)

void PostOrder(BiTree T){
if(T!=NULL){
         PostOrder(T->lchild);      //递归遍历左子树
         PostOrder(T->rchild);        //递归遍历右子树
         visit(T);    //访问根结点         
}
}

(上述遍历时间复杂为(O(n))

(4)非递归算法

  1. 先扫描根结点的所有左结点并依次入栈
  2. 出栈一个结点p*(此时*p无左孩子或左孩子均已访问过),访问
  3. 扫描该结点的右孩子结点,将其进栈,再扫描该右孩子结点的所有左结点,并一一进栈
  4. 如此继续,直到栈空
void InOrderF(BitTree T){
    InitStack(S);
    BiTree p=T;
    while(p||!IsEmpty(S)){  //栈非空或p不空时循环
        if(p){        //根指针进展,遍历左子树
            Push(S,p);   //非空二叉树 先向左走
            p=p->lchild;
}
    else{
        Pop(S,p);    /根指针退栈,访问根结点,遍历右子树
        visit(p);  //退栈,访问根结点
        p=p->rchild();   //再向右子树走
}
}
}

 

 

(5)层次遍历

按照层的顺序依次遍历,即图中箭头的方向。

需要借助队列来完成层次遍历。

先将二叉树根结点入队,然后出队,访问该结点,

若它有左子树,则将左子树根结点入队;

若它有右子树,则将右子树根结点入队。然后出队,对出队结点访问,重复直到队列为空

void LevelOrder(BiTree T){
      InitQueue(Q);
      BiTree p;
      EnQueue(Q,T);   //将根结点入队
      while(!IsEmpty(Q)){
        DeQueue(Q,p);    //队头元素出队
        visit(p);
        if(p->lchild!=NULL)
            EnQueue(Q,p->lchild);  //左非空,左入队
        if(p->rchild!=NULL){
            EnQueue(Q,p->rchild);   //右非空,右入队
}
}
}

(遍历二叉树实际将二叉树中的结点排列为一个先行序列,(除去第一个和最后一个)序列中每个结点都有直接前驱和直接后继)

由于二叉链表所表示的树存在许多空的指针,利用这些空指针存放指向其直接前驱或后继的指针)

三、线索二叉树

(1)基本概念

二叉树线索化时,规定:若无子树,令lchiild指向其前驱结点;若无右子树,令rchild指向其后继结点。

typedef struct ThreadNode{
        ElemType data;                    //数据元素
        struct ThreadNode *lchild,*rchild;//  左右孩子指针
        int ltag,rtag;                    //左右线索标志
}ThreadNode,*ThreadTree;

(2)构造线索二叉树

步骤:1.遍历二叉树

            2.每遍历一个结点,检查当前结点左右指针域是否为空

            3.若为空,将他们改为指向前驱或后继结点的线索

//中序遍历队二叉树线索化的递归算法
void InThread(ThreadTree &p,ThreadTree &pre){
    if(p!=NULL){
        InThread(p->lchild,pre);  //递归,线索化左子树
        if(p->child==NULL){   //左子树为空
            p->lchild=pre;
            p->ltag=1;
}
if(pre!=NULL&&pre->rchild==NULL){
        pre->rchild=p;       //建立前驱结点的后继线索
        pre->rtag=1;
}
    pre=p;            //标记当前结点成为刚刚访问过的结点      
    InThread(p->rchild,pre);     //递归,线索化右子树
}
}

//中序建立线索二叉树
void  CreateInThread(ThreadTree T){
    ThreadTree pre=NULL;
    if(T!=NULL){       //非空二叉树线索化
        InThread(T,pre);   //二叉树线索化
        pre->rchild=NULL;   //处理遍历的最后一个结点
        pre->rtag=1;
}
}

总而言之,要点就是 遍历+线索

为了方便操作,所以再线索树上加一个头结点。

并令lchild域的指针指向二叉树的根结点,令其rchild域的指针指向中序遍历时访问的最后一个结点。

否则,令二叉树中序序列中的第一个结点的lchild域的指针和最后一个结点的rchild域的指针均指向头结点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值