[LeetCode]35 Search Insert Position

6 篇文章 0 订阅
#include <iostream>
#include <vector>

using namespace std;
//Given a sorted array and a target value, return the index if the target is found.If not, return the index where it would be if it were inserted in order.
//
//You may assume no duplicates in the array.
//
//Here are few examples.
//[1, 3, 5, 6], 5 → 2
//[1, 3, 5, 6], 2 → 1
//[1, 3, 5, 6], 7 → 4
//[1, 3, 5, 6], 0 → 0

class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int length = nums.size();
for (int i = 0; i < length; i++)
{
if (nums[i] >= target)
{
return i;
}
}
return length;
}
};
//二分搜索法优化我们的时间复杂度
//元素的访问
//
//下标访问： vec[1]; //并不会检查是否越界
//at方法访问： vec.at(1); //以上两者的区别就是at会检查是否越界，是则抛出out of range异常
//访问第一个元素： vec.front();
//访问最后一个元素： vec.back();
//返回一个指针： int* p = vec.data(); //可行的原因在于vector在内存中就是一个连续存储的数组，所以可以返回一个指针指向这个数组。这是是C++11的特性。
class Solution1
{
public:
int searchInsert(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
if (nums.back() < target)
{
return nums.size();
}
while(left < right)
{
int mid = left + (right - left)/2; //中间值
if (nums[mid] == target)
{
return mid;
}
else if (nums[mid] < target)
{
left = mid + 1;//在mid之后寻找
}
else
{
right = mid;//调整搜索范围
}
}
return right;
}

};

int main()
{
vector<int> nums = { 1, 3, 5, 6 };
int target = 3;
Solution solu;
int ret = solu.searchInsert(nums,target);

Solution1 solu1;
target = 5;
ret = solu1.searchInsert(nums,target);
cout << ret << endl;
system("pause");
return 0;
}

#include <iostream>
#include <vector>
using namespace std;

class  Solution
{
public:

//二分搜索法
int searchInsert(vector<int>& nums, int target) {
int beg = 0, end = nums.size() - 1;
if (nums.back() < target)
{
return nums.size();
}
while (beg < end)
{
int mid = beg + (end - beg) / 2; //中间值
if (nums[mid] > target) //在前半部分
{
end = mid;//调整搜索范围
}
else if (nums[mid] < target)//在后半部分
{
beg = mid + 1;//在mid之后寻找
}
else//刚好相等时候
{
return mid;
}
}
return end;
}

};

int main()
{
vector<int> nums = { 1, 3, 5, 6 };
int target = 4;
Solution solu;

int ret = solu.searchInsert(nums,target);
cout << ret << endl;
system("pause");
return 0;
}

C++ STL之vector用法总结

介绍

1. vector是表示可变大小数组的序列容器。
2. 就像数组一样，vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问，和数组一样高效。但是又不像数组，它的大小是可以动态改变的，而且它的大小会被容器自动处理。
3. 本质讲，vector使用动态分配数组来存储它的元素。当新元素插入时候，这个数组需要被重新分配大小为了增加存储空间。其做法是，分配一个新的数组，然后将全部元素移到这个数组。就时间而言，这是一个相对代价高的任务，因为每当一个新的元素加入到容器的时候，vector并不会每次都重新分配大小。
4. vector分配空间策略：vector会分配一些额外的空间以适应可能的增长，因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何，重新分配都应该是对数增长的间隔大小，以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5. 因此，vector占用了更多的存储空间，为了获得管理存储空间的能力，并且以一种有效的方式动态增长。
6. 与其它动态序列容器相比（deques, lists and forward_lists）， vector在访问元素的时候更加高效，在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作，效率更低。比起lists和forward_lists统一的迭代器和引用更好。

用法

1. 头文件

#include<vector>

2. vector声明及初始化

vector<int> vec;        //声明一个int型向量
vector<int> vec(5);     //声明一个初始大小为5的int向量
vector<int> vec(10, 1); //声明一个初始大小为10且值都是1的向量
vector<int> vec(tmp);   //声明并用tmp向量初始化vec向量
vector<int> tmp(vec.begin(), vec.begin() + 3);  //用向量vec的第0个到第2个值初始化tmp
int arr[5] = {1, 2, 3, 4, 5};
vector<int> vec(arr, arr + 5);      //将arr数组的元素用于初始化vec向量
//说明：当然不包括arr[4]元素，末尾指针都是指结束元素的下一个元素，
//这个主要是为了和vec.end()指针统一。
vector<int> vec(&arr[1], &arr[4]); //将arr[1]~arr[4]范围内的元素作为vec的初始值

3. vector基本操作

(1). 容量

• 向量大小： vec.size();
• 向量最大容量： vec.max_size();
• 更改向量大小： vec.resize();
• 向量真实大小： vec.capacity();
• 向量判空： vec.empty();
• 减少向量大小到满足元素所占存储空间的大小： vec.shrink_to_fit(); //shrink_to_fit

(2). 修改

• 多个元素赋值： vec.assign(); //类似于初始化时用数组进行赋值
• 末尾添加元素： vec.push_back();
• 末尾删除元素： vec.pop_back();
• 任意位置插入元素： vec.insert();
• 任意位置删除元素： vec.erase();
• 交换两个向量的元素： vec.swap();
• 清空向量元素： vec.clear();

(3)迭代器

• 开始指针：vec.begin();
• 末尾指针：vec.end(); //指向最后一个元素的下一个位置
• 指向常量的开始指针： vec.cbegin(); //意思就是不能通过这个指针来修改所指的内容，但还是可以通过其他方式修改的，而且指针也是可以移动的。
• 指向常量的末尾指针： vec.cend();

(4)元素的访问

• 下标访问： vec[1]; //并不会检查是否越界
• at方法访问： vec.at(1); //以上两者的区别就是at会检查是否越界，是则抛出out of range异常
• 访问第一个元素： vec.front();
• 访问最后一个元素： vec.back();
• 返回一个指针： int* p = vec.data(); //可行的原因在于vector在内存中就是一个连续存储的数组，所以可以返回一个指针指向这个数组。这是是C++11的特性。

(4)算法

• 遍历元素
vector<int>::iterator it;
for (it = vec.begin(); it != vec.end(); it++)
cout << *it << endl;
//或者
for (size_t i = 0; i < vec.size(); i++) {
cout << vec.at(i) << endl;
}
• 元素翻转
#include <algorithm>
reverse(vec.begin(), vec.end());
• 元素排序
#include <algorithm>
sort(vec.begin(), vec.end()); //采用的是从小到大的排序
//如果想从大到小排序，可以采用上面反转函数，也可以采用下面方法:
bool Comp(const int& a, const int& b) {
return a > b;
}
sort(vec.begin(), vec.end(), Comp);

1、二分查找可以解决的问题：二分查找可以解决预排序数组的查找问题。只要数组中包含T（即要查找的值），那么通过不断的缩小包含T的范围，最终就可以找到它。一开始，范围覆盖整个数组，将数组的中间项与T进行比较，可以排除一般的元素，范围缩小一半。就这样反复比较反复缩小范围，最终就会在数组中找到T，或者确定原以为T所在的范围实际为空。对于包含N个元素的表，整个查找过程大约要经过Log（2）N次比较。
注意：二分查找是针对有序的数组而言的。
#include<iostream>
using namespace std;
//从效率上看，使用移位指令有更高的效率，因为移位指令占2个机器周期，而乘除法指令占4个机器周期。
//从硬件上看，移位对硬件更容易实现，所以会用移位，移一位就乘2, 这种乘法当然考虑移位了
//int binary_search(int arr[], int n, int key)
//{
//	int left = 0;   //数组的首位置，即arr[0]处
//	int right = n - 1;//数组的最后一个位置，即arr[n-1],数组大小为n
//
//	//循环条件一定要注意
//	while (left <= right)
//	{
//		int mid = left + ((right - left) >> 1);//此处的mid的计算一定要放在while循环内部，否则mid无法正确更新;并且此处用移位代替除以2可以提高效率，而且可以防止溢出。
//		if (arr[mid] > key)//数组中间的位置得数大于要查找的数，那么我们就在中间数的左区间找
//		{
//			right = mid - 1;
//		}
//		else if (arr[mid] < key)//数组中间的位置得数小于要查找的数，那么我们就在中间数的右区间找
//		{
//			left = mid + 1;
//		}
//		else
//		{
//			return mid;//中间数刚好是要查找的数字。
//		}
//	}
//
//	//执行流如果走到此处说明没有找到要查找的数字。
//	return -1;
//}

/*

arrat：数组 ， low:上界；  high:下界;  target:查找的数据； 返回target所在数组的下标

*/
int binarySearch(int array[], int low, int high, int target) {
int middle = (low + high) / 2;
if (low > high) {
return -1;
}
if (target == array[middle]) {
return middle;
}else if (target < array[middle]) {
return binarySearch(array, low, middle - 1, target);
}else if(target > array[middle]) {
return binarySearch(array, middle + 1, high, target);
}
return -1;
}

//测试用例如下所示：
void main()
{
int arr[5] = { 1, 3, 5, 9, 10 };
int ret1 = 0, ret2 = 0, ret3 = 0;
ret1 = binarySearch(arr,0,4,9);
cout << ret1 << endl;
ret2 = binarySearch(arr,0,4,5);
cout << ret2 << endl;
ret3 = binarySearch(arr,0,4,2);
cout << ret3 << endl;
system("pause");
}

3、二分查找代码需要注意的地方：
right=n-1-------->while(left <= right)-------->right=mid-1;
right=n-------->while(left < right)-------->right=mid;
此外：大部分人喜欢在最开始就判断arr[mid]与key相等，但是这样是不明智的，因为相等情况在大多状况下都是少数，写在开始的话，每次循环都需要判断一次相等，浪费时间，效率太低。

#include <iostream>
#include <vector>
using namespace std;

class Solution
{
public:
int binary_search(vector<int>& nums, int target)
{
int left = 0;				//数组的首位置，即arr[0]处
int right = nums.size() - 1;//数组的最后一个位置，即arr[n-1],数组大小为n
while (left <= right)
{
int mid = left + ((right - left) >> 1);//此处的mid的计算一定要放在while循环内部，否则mid无法正确更新;并且此处用移位代替除以2可以提高效率，而且可以防止溢出。
if (nums[mid] > target)//要找的元素在前半部分
{
right = mid - 1;//如果是,忽略掉后半部分,在mid前寻找
}
else if (nums[mid] < target)//要找的元素在后半部分
{
left = mid + 1;//如果是,请忽略掉前半部分,在mid后寻找
}
else//中间数刚好是要查找的数字
{
return mid;
}
}
//执行流如果走到此处说明没有找到要查找的数字。
return -1;
}

};

//测试用例如下所示：
void main()
{
vector<int> arr = { 1, 3, 5, 9, 10 };
int ret1 = 0, ret2 = 0, ret3 = 0;
Solution solu;
ret1 = solu.binary_search(arr,9);
cout << ret1 << endl;
ret2 = solu.binary_search(arr,5);
cout << ret2 << endl;
ret3 = solu.binary_search(arr,2);
cout << ret3 << endl;
system("pause");
}

• 0
点赞
• 0
收藏
觉得还不错? 一键收藏
• 0
评论
01-10 86
03-23 71
05-26

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。