- 博客(15)
- 收藏
- 关注
原创 GN层论文实验分析
GN层论文的实验结果做的非常非常的完善,真的是我看过所有论文里面图表给的最最最清晰的一个(毕竟Kaiming He的论文)。本篇博客在分析实验结果的同时也让自己从中学习到一些写作手法。因为这么简单的一篇论文,代码也就几句话,能发ECCV这跟实验结果完善也是分不开的。论文:Group Normalization作者:Kaiming He,Yuxin Wu作者分别从CV的三个方向做了实验,分别是目标分类,目标检测和分割,视频分类。下面一一介绍Image Classification in Image
2021-07-08 18:00:46 776 1
原创 GN层(Pytorch)
BN层存在的问题:BN层的模型效果取决于Batch_size大小,那么我的实验分别在batch_size=4和8的情况下运行的,这些batch_size都无法让BN层真正起到作用,甚至负作用,我个人感觉4的效果比8好这就是个运气问题,BN层中的running_mean,running_var都是最后一次更新后的值,那么每一个mini_batch的影响输入都不一样,4和8也无法让这些mean和var接近真实数据集的均值方差。若我不使用BN层采用FrozenBN层(即不去更新BN层中的四个参数),但我的数据集
2021-07-06 22:51:17 1508 3
原创 BN层(Pytorch)
近期在实验的过程中,发现了一个问题。实验结果受Batch_size影响在波动。Batch_size在分别为4和8的时候,实验效果不同,当Batch_size为8的时候实验效果还要差一点.这一点我很意外,当所有超参设置都一样的时候,BN层效果与Batch_size大小的影响应该是呈现一个正相关.这里放一张Kaiming He在2018ECCV上发表的《Group Normalization》论文中的一张图。图中蓝色曲线是ResNet50在ImageNet上分类的错误率,当Batch_size越大的时候,错误率
2021-07-06 22:06:30 2705
原创 Focal Loss源码
class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2, size_average=True): super(FocalLoss, self).__init__() self.alpha = torch.tensor(alpha).cuda() self.gamma = gamma self.size_average = size_average .
2021-05-22 15:40:48 508
原创 关于Focal Loss
二元交叉熵损失函数:做二分类的时候,往往用sigmoid将该数归一化至[0,1]的向量,这个概率表述了预测为正类的可能性,概率越大,可能性越大。我们将结果后的值表述为-----------------------------------------------------------------------------(1)-----------------------------------------------------------------------------(2)两者.
2021-05-20 22:27:13 441
原创 Deformable ConvNets v2 Pytorch版源码讲解_3
Deformable ConvNets v2 Pytorch版源码讲解_2讲到了如何通过这些生成的offset去生成偏移后的坐标点,但是这些点现在都没有特征值,比如(7.2,8.3)这只是一个偏移后的坐标点,并没有真实的特征值。我们现在需要做的就是用原始输入特征图上的点的特征值去计算偏移后的坐标点上的特征值。关于双线性插值的原理我原来博客中也有讲到过,这里不再赘述。 p = p.contiguous().permute(0, 2, 3, 1) q_lt = p.detac
2021-05-14 15:01:12 780 2
原创 Deformable ConvNets v2 Pytorch版源码讲解_2
接着上一章的来讲,上一章主要是介绍了一下可变形卷积v1和v2,红色字都是基于源码来的。那么这一篇文章就分析一下整个代码流程是怎么样的。代码是Pytorch版的,这里附上Github地址:https://github.com/4uiiurz1/pytorch-deform-conv-v2/blob/master/deform_conv_v2.py。这里再次感谢大佬的开源代码!先附上我debug时采用的代码。if __name__ == '__main__': feature_map =.
2021-05-12 23:21:57 2337 4
原创 Deformable ConvNets v2 Pytorch版源码讲解_1
Deformable ConvNets v1: 网上关于这个的讲解很多,总结一句话就是让某一层的输入都学习到一个offset(注意这里每一个通道上的点学到的offset都是一样的,举个例子:通道1上的(0,0)学到的offset和通道2上的(0,0)学到的offset是一模一样的,即都offset至一个固定点,但得出的像素值肯定不一样。比如说都offset至(1,1)这个点,但其来自于不同通道它们的像素值肯定不一样。当然咱们这个例子有点理想,offset学习的都是整数。咱们后面分析源码的时候在...
2021-05-12 16:15:06 788
原创 双线性插值公式推导
Ia = input_img[np.arange(B)[:,None,None], y0, x0] Ib = input_img[np.arange(B)[:,None,None], y1, x0] Ic = input_img[np.arange(B)[:,None,None], y0, x1] Id = input_img[np.arange(B)[:,None,None], y1, x1] wa = (x1-x) * (y1-y) wb = ...
2021-04-07 19:43:38 1056
原创 Faster R-CNN 代码解析
Faster R-CNN代码分析build_proposals层:该层是最难理解的,所有Faster R-CNN的核心全部都在这个函数里面。 def build_proposals(self, is_training, rpn_cls_prob, rpn_bbox_pred, rpn_cls_score): if is_training: rois, roi_scores = self._proposal_layer(rpn_cls_prob,
2021-04-06 19:22:00 558 2
原创 Faster R-CNN代码分析
Faster R-CNN代码分析去年的时候,因为急着写论文。所以没有对Faster R-CNN代码继续做分析了。这两个星期我会继续把这个代码整体的做完。包括里面的每一个细节,作者这段代码的意义,乃至这个函数的意义我都会说明白。首先看咱们的这个Faster R-CNN中最核心最核心的一句代码。layers = self.net.create_architecture(sess, "TRAIN", self.imdb.num_classes, tag='default') #核心该函数定义了模型的
2021-04-03 19:29:35 207 1
原创 Faster R-CNN中的一些细节
关于Faster R-CNN中的细节思考一个问题,上图中,为什么在conv feature map中这个特征图中的一个蓝色的像素点可以去代表原图中那9个anchor中的信息?那我想改一下anchor的数量,10个行不行?或者说改anchor的大小,原来是128,256,512的面积,我改成1024行不行?首先纠正一下问题的说法,不是一个蓝色的像素点可以去代表原图中那9个anchor中的信息,而是这一整个通道的蓝色像素点(论文中采用的backbone是ZF,所以说256-d,我自己的项目中backbone
2021-04-01 21:09:51 164
转载 图像的仿射变换代码以及双线性插值代码理解
图像的仿射变换代码以及双线性插值代码理解因为前段时间看了一下STN网络和可变形卷积,然后想研究一下代码实现部分,发现真的是一点都看不懂,还好看了一篇大佬的博客,写这篇文章的目的是细说一下大佬博客中的代码细节这里附上原博客链接:https://blog.csdn.net/u011974639/article/details/79675408图像的仿射变换def affine_grid_generator(height,width,M): num_batch = M.shape[0]
2021-03-25 16:33:14 620
原创 TF版的Faster-RCNN代码分析
记录一下学习TF版的Faster-RCNN代码过程。本文将持续更新。如果有大家觉得不对的地方欢迎大家指出。谢谢大家!环境:Windows10+Tensorflow1.13+python3.5首先Faster-RCNN的论文很多网站上都有讲。也有汉化版的。大家可以多去看看。本文主要从代码切入。描述一下重点的代码细节。首先程序从这里入口这里第一个train=Train() 是关于数据读取方面...
2020-03-05 22:37:06 194
原创 Fster-RCNN 训练自己的数据集
训练自己的数据集本人研究的方向是乳腺肿块的目标检测。目前已经在自己的电脑上搭建出Faster-RCNN的环境以及训练出自己的数据集。本人电脑环境:Windows10+tensorflow 1.13+Python3.5...
2020-03-05 18:08:32 458
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人