随着信息过载时代的到来,人们逐渐习惯于从主动获取信息变成了被动接受信息,而基于智能推荐算法的内容、商品、服务分发系统,也已经逐步成为信息平台、电商等几乎所有互联网业务的标配,逐步给各个业务场景带来巨大的收益。
本次分享,我们将就电商推荐场景下的智能算法,邀请来自京东科技、微拍堂、有赞等电商领域的3位嘉宾,与大家进行分享交流,一起探讨智能算法在电商推荐场景下的最新技术实践。
直播时间:2021年3月6日(周六),09:30-12:00
直播地点:DataFunTalk直播间
主办方:DataFunTalk、美团
日程安排:
详细介绍:
01
李欣如
京东科技 | 高级算法工程师
负责京东科技推荐及广告系统的算法优化工作,硕士毕业于哈尔滨工业大学,先后在美团、腾讯和京东从事推荐相关的工作,对信息流和电商领域的推荐系统有较深入的理解研究。
演讲议题:京东科技推荐算法探索与实践
议题介绍:个性化推荐在电商领域的作用不言而喻,推荐算法直接影响产品体验、用户留存和平台收益。本次分享结合电商推荐和广告营销两个领域,介绍复杂业务形态下的算法技术应用,以及如何打通业务领域的壁垒,达到整体收益更优的目的。
听众收益:
了解算法迭代的思考过程
推荐和广告营销的结合模式
新技术/实用技术点:
多任务学习的优化及应用
广告营销的相关知识,PID控制、预算分配等
02
赵争超
微拍堂 | 算法负责人
微拍堂算法Leader,负责微拍堂APP的个性化流量分发及千人千面的内容推荐,负责全公司的算法体系及团队建设,包括推荐、搜索、NLP等,驱动公司的算法技术方向。前同盾科技资深算法专家,负责同盾金融营销场景的算法体系建设。前阿里巴巴高级算法专家,负责过包括淘宝购物路径上的个性化推荐,及新零售领域的大数据应用探索和落地:包括智慧门店数据化选品、线下智能导购等。
演讲议题:深度召回在文玩拍卖个性化推荐中的实践
议题介绍:在推荐系统中,matching阶段的模型决定了最终业务效果的上限,而排序模型的工作就是去无限逼近这个上限。在浅库存和短生命周期的拍卖行业,如何最大程度地利用历史行为学习新品的embedding表征,在用户偏好极其聚焦的文玩市场,如何学习用户的多元兴趣、潜在兴趣embedding表征,一直是我们在deep matching工作中探索的方向。在尝试了FM,双塔DNN,自编码等方式后,我们找到了一种结合文玩拍品内容的NER实体识别,并将实体识别的结果作为side information整合skip-gram+negative sampling来作为item2vec的方法,同时我们基于用户的短期/长期行为、用户画像结合门机制和度量学习的方法来学习用户的多元兴趣,潜在兴趣。目前这部分deep matching的方法在微拍堂的个性化推荐中发挥着重要的作用。
听众收益:
如何在非标品、浅库存、短生命周期的商品交易模式下利用历史信息构建item embedding
如何在用户需求极其聚焦的文玩场景中构建用户的潜在多兴趣向量
新技术/实用技术点:
基于对非标品的商品内容NER实体识别,结合用户历史行为学习item2vec
基于用户的短期兴趣、中长期兴趣和用户画像,结合门机制、度量学习的方法构建用户多兴趣向量
如何在fassis中实现“分域”的embedding召回
03
任艳萍
有赞 | 算法工程师
具有多年NLP领域从业经验,目前主要专注推荐领域的研究,负责推动搭建了有赞推荐系统,包括架构设计、算法选型、迭代方向设定等。
演讲议题:有赞私域场景下的推荐能力演进
议题介绍:本次分享重点介绍在有赞私域场景下的推荐演进,从0到1再到2搭建有赞推荐能力,及每个阶段采用的算法、实现的目标及获得的成果,还有整个过程遇到的问题、踩过的坑、做过的尝试,最后会介绍基于现状对未来的规划及展望。
听众收益:私域场景下,如何结合具体业务需求,并在深刻理解业务基础上,从0开始搭建推荐系统。私域和公域流量差异较大,可能会遇到什么问题及如何避免,本次分享会和大家一起探讨交流。
新技术/实用技术点:推荐架构、特征工程、召回、排序、重排、深度学习
直播报名:
识别二维码,免费报名
相关推荐:
美团技术团队:
10000+工程师,如何支撑中国领先的生活服务电子商务平台?4.6亿消费者、630万商户、2000多个行业、几千亿交易额背后是哪些技术?这里是美团、大众点评、美团外卖、美团配送、美团优选等技术团队的对外窗口。
DataFunTalk:
专注于大数据、人工智能技术应用的分享与交流。发起于2017年,在北京、上海、深圳、杭州等城市举办超过100场线下沙龙、论坛及峰会,已邀请近600位专家和学者参与分享。其公众号 DataFunTalk 累计生产原创文章300+,百万+阅读,9万+精准粉丝。