本篇分享适用于中小电商平台的商品推荐算法,理论与实践结合出发>>>
认真读完本篇,你会收获:
1. 为什么各个电商平台都热衷于做个性化商品推荐?
2. 常见的商品推荐场景有哪些?以及实践中的项目流程。
3. 一个完整的商品详情页实战案例,零基础也可以写推荐算法。
一、为什么各个电商平台都热衷于做个性化商品推荐?
一句话:能增加收入。
分析这个问题要从电商销售额构成来讲:GMV=流量*转化率
先来看图中这4款饮品,你喜欢蓝色清新A,还是抹茶口味B,或是焦糖浓郁D?也可以问一问身边的朋友更喜欢哪款?你们喜欢的是否是同一款?
这里我想表达的是:对于不同的顾客,偏好的饮品是不同的,如果来到店里的每位客人我们都推荐饮品A,那么喜欢饮品D的客人可能会认为这家店过于清淡不太适合自己。为了实现转化率/销售额的最大化,需要做好顾客与商品的匹配关系。
所幸电商的数据积累以及店铺商品呈现,给这个想法提供了极佳的实现条件。
二、商品推荐场景+实操流程
1. 商品推荐场景
1>按照购物流程划分,有四种常见推荐位置:首页瀑布流推荐、商品详情页推荐、购物车推荐、结算页满额加购推荐。
(用户搜索关键词的商品结果排序不在此处展开讨论)
2>按照用户的购买场景划分:有明确购物需求的搜索、直奔某品类、随便逛逛、比价、送礼等。
ps:如有更好的场景划分方法,欢迎留言哦~
2. 常用商品推荐逻辑
1> 推荐的目标:根据用户已知的信息,推测出用户可能感兴趣的商品。
2> 分析达到目标的路径(解题):
如下图:如何将商品A2与用户1建立联系?
两种途径:建立用户1与用户2之间的关系1,建立商品A1与商品A2之间的关系2