hzwer(旷视科技 算法研究员)回答:
目前我观察到 deep learning 做 low-level 领域的 paper 经常被吐槽 novelty 不够。因为大多数 CV 从业者,看的都是很前沿的文章,感觉 low-level 在拾人牙慧。实际上这忽略了任务之间的巨大差异:举个例子,做过超分蒸馏的人会知道,分类蒸馏天花乱坠,但超分就没有那种随便抄一些 loss 就能 work 的蒸馏。做超分加速也是,和分类的加速比完全不能比。
做 low-level 的时候感觉想出一点新东西,就会找到 n 年前有人在分类检测上做过,于是就会被评价为创新性很差。换句话说,low-level vision 我个人认为近几年来是个创新洼地(相对 high-level),现在不得不先从其它 learning 相关领域迁移技术,然而这种技术迁移很难被认为是创新。
还有 low-level 指标定的也不好。对于一些成熟 task,psnr上升0.1dB都很艰难,很多人会觉得0.1dB怎么看都是灌水。而且图像质量和 psnr 关系也很迷。要推翻这些指标不是一朝一夕的(比如我直接说我要比 lpips 不比 psnr,或者发明新的 benchmark,会被认为不公平等等)。low-level 新研究者可能还受很多比赛 paper 影响,觉得要做到所谓扎实和实用,却没有把创新性的短板补起来。
总之就是既不讨好喜欢听故事的研究者,也很难讨好工业界和 hard case 战斗每天看图的工程师。革命尚未成功,同志仍需努力。
文章转载自知乎,著作权归属原作者。
点个在看你最好看