如何评价近几年顶会的超分,去噪,去模糊等图像复原文章?

旷视科技的算法研究员指出,低级视觉任务如图像超分辨率和加速在深度学习领域的创新性常被低估。由于任务间的巨大差异,技术迁移并不容易被视为创新,且现有指标如PSNR难以准确衡量效果。此外,新研究者可能过于追求实用性和传统指标,忽视了创新的重要性。低级视觉任务的创新面临着既要满足理论上的新颖性,又要应对实际应用中的困难的双重挑战。
摘要由CSDN通过智能技术生成

hzwer(旷视科技 算法研究员)回答:

目前我观察到 deep learning 做 low-level 领域的 paper 经常被吐槽 novelty 不够。因为大多数 CV 从业者,看的都是很前沿的文章,感觉 low-level 在拾人牙慧。实际上这忽略了任务之间的巨大差异:举个例子,做过超分蒸馏的人会知道,分类蒸馏天花乱坠,但超分就没有那种随便抄一些 loss 就能 work 的蒸馏。做超分加速也是,和分类的加速比完全不能比。

做 low-level 的时候感觉想出一点新东西,就会找到 n 年前有人在分类检测上做过,于是就会被评价为创新性很差。换句话说,low-level vision 我个人认为近几年来是个创新洼地(相对 high-level),现在不得不先从其它 learning 相关领域迁移技术,然而这种技术迁移很难被认为是创新。

还有 low-level 指标定的也不好。对于一些成熟 task,psnr上升0.1dB都很艰难,很多人会觉得0.1dB怎么看都是灌水。而且图像质量和 psnr 关系也很迷。要推翻这些指标不是一朝一夕的(比如我直接说我要比 lpips 不比 psnr,或者发明新的 benchmark,会被认为不公平等等)。low-level 新研究者可能还受很多比赛 paper 影响,觉得要做到所谓扎实和实用,却没有把创新性的短板补起来。

总之就是既不讨好喜欢听故事的研究者,也很难讨好工业界和 hard case 战斗每天看图的工程师。革命尚未成功,同志仍需努力。

文章转载自知乎,著作权归属原作者。

92831f65faa6c3c02d6ae1e51de0f2a6.png

65e02549bd445acd52c762a325e50507.png

45f7ea92101f7278fbd5225acbc6f393.png

点个在看你最好看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值