基于Tensorflow用Yolov3训练自己的数据集

本文档详细介绍了如何在Windows 10环境下,利用Tensorflow 1.15和Python 3.6,基于Yolov3模型训练自定义的五类物体检测数据集,包括数据准备、模型训练和测试过程。训练数据包含1000张图片,模型转为pd格式后大小约为240M,检测速度为4fps。
摘要由CSDN通过智能技术生成

背景说明:本次训练的模型分五类,分别为['whiteboard','chair','diningtable','sofa','tvmonitor']。训练数据集大约1000张。模型转为pd格式大小约240M,每帧检测需要约250ms,即4fps。

环境:Window 10 系统,python=3.6,tensorflow=1.15 。

整个项目下载路径:https://pan.baidu.com/s/1uZbdJQEyeSfxTlXR-fQ24g  提取码:bq9u

一、数据准备

1.用Labelimg标注好图像训练集,放在D:/AI\yolov3_whiteboard/data/dataset_whiteboard/Annotations, 里面是已经标注好的XML文件。还没安装Labelimg图像标注工具的请点击安装。原始图像放在D:/AI/yolov3_whiteboard/data/dataset_whiteboard/JPEGImages/train文件中。

2.把XML文件的内容转为txt文本并保存。运行D:/AI/yolov3_whiteboard/scripts/take_xml_to_train.py即可,这里说明一下几个参数:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值