💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
在目标检测和分类这方面,Yolo可以快速很好的解决许多问题,这里总结了快速上手Yolov3的方法,直接快速训练自己的数据集使用。
目录
一、源码包准备
本配套教程提供一个已经调试通的源码包,包含了数据集和源代码,以及我修改的代码,学习者可以先下载后配套着进行学习,接下来的讲解,都将基于此源码包讲解,获取源码包方法文章末扫码到公众号「视觉研坊」中回复关键字:目标检测YoloV3,会自动回复下载链接。
下载好解压后的文件内容见下:
二、训练集准备
学者在使用自己的训练集时,只需要将图片和标签放到源码包的对应文件夹中,关于存放数据集的文件夹位置关系见下。
2.1 训练样本和标签存放位置
图片训练样本和标签的存放位置,见下:
2.1.1 JPEGImages文件
其中JPEGImages文件中的内容见下:
2.1.2 Annotations文件
其中Annotations文件中的内容见下:
每个.xml文件中的内容见下:
在训练自己数据集的时候,只需要将自己的数据集图片拷贝到文件夹JPEGImages中,标签文件拷贝到文件Annotations中就行,不需要自己重新命名文件夹,直接在源码包框架上使用。
2.2 制作自己训练集
2.2.1 制作数据集标签
关于制作VOC数据集,yolo数据集的详细方法,可以参考我另外一篇博客,链接:VOC数据集制作
制作COCO数据集的详细方法见我另外一篇博客,链接:COCO数据集制作
三、训练
3.1 参数修改
(1)在文件夹model_data文件中cls_classes.txt文件中写入打标签时的类名,见下:
(2)文件夹model_data文件中yolo_anchors.txt文件,这里主要介绍一下文件中的内容,学习者不用修改,保持原有的默认即可,见下:
(3)修改voc_annotion.py文件中classes_path的路径:
(4) 运行voc_anntion.py文件会生成6个训练要用到的.txt文件,6个.txt文件分别见下:
(5) 修改训练文件train.py中的classes_path,见下:
3.2 开始训练
直接运行train.py文件就可以开始训练了,见下:
四、推理测试
4.1 参数修改
训练好模型后进行测试,将训练好的模型复制到yolo.py文件下,并修改classes_path,见下:
4.2 测试
开始验证训练后模型的检测效果,直接运行文件predict.py文件,见下:
4.3 测试输出
运行后的输出见下:
五 检测结果
5.1 测试单帧图像
检测效果见下:
5.2 视频实时测试
5.2.1 代码参数修改
想用视频检测时的代码修改见下:
5.2.2 视频测试效果
视频实时的检测效果见下(这里只是截取了其中一帧,运行代码视频是可以实时高效检测到人脸的):
六、总结
以上就是使用Yolov3训练自己制作的数据集,快速上手的方法,学习者在使用的时候只需要按照我上面的步骤,修改几个文件参数就可以训练自己的数据集了,希望对正在学习Yolov3的你有所帮助,想快速上手学习Yolov5的学者,详见我另外一篇博客YoloV5快速上手。
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!