基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统

一、系统架构详解

1. 输入层

a. 用户行为数据

  • 数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。
  • 处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。
  • 特征工程
    • 行为序列:用户行为的时间顺序,如最近浏览的商品类别。
    • 频率与时长:浏览某类商品的频率和时长。
    • 转化率:从浏览到购买的转化情况。

b. 商品数据

  • 数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。
  • 处理方式:标准化处理、向量化表示(如使用词嵌入或图嵌入)。
  • 特征工程
    • 类别特征:商品所属的类别和子类别。
    • 文本特征:商品描述、标题的自然语言处理(NLP)特征。
    • 图像特征:商品图片的视觉特征(可选,用于视觉推荐)。

c. 社交关系

  • 数据来源:用户的社交网络数据,如好友列表、关注用户的行为。
  • 处理方式:构建社交图谱,分析好友的购买行为和偏好。
  • 特征工程
    • 好友影响:好友的购买行为对用户的影响程度。
    • 群体偏好:相似用户群体的整体偏好趋势。

d. 外部知识

  • 数据来源:行业报告、市场趋势、节假日促销信息、季节性需求等。
  • 处理方式:数据采集、知识图谱构建、信息抽取。
  • 特征工程
    • 时间特征:结合节假日、季节变化调整推荐策略。
    • 趋势特征:分析市场趋势,预测未来热门商品。
2. RAG 模块:检索增强生成

a. 检索模块

  • 向量化工具:使用 FAISS(Facebook AI Similarity Search)或其他高效的向量检索库,将商品和用户数据转化为向量空间。
  • 索引构建
    • 商品向量索引:为每个商品构建向量索引,提高检索效率。
    • 用户向量索引:基于用户行为数据构建用户向量,用于个性化检索。
  • 检索策略
    • 相似性检索:基于用户向量检索相似商品。
    • 上下文检索:根据当前会话上下文检索相关内容,如最近浏览的商品类别。

b. 生成模块

  • 大语言模型:采用 GPT-4 或其他先进的生成式语言模型。
  • 上下文融合:将检索到的相关商品信息和知识注入生成模型,生成自然语言推荐内容。
  • 个性化生成:根据用户特征和行为生成定制化的推荐语句。
3. KAG 模块:知识感知生成

a. 知识图谱构建

  • 数据来源:整合内部商品数据和外部知识源,构建全面的知识图谱。
  • 实体与关系
    • 实体:用户、商品、品牌、类别、配件等。
    • 关系:如“相似购买”、“常被一起购买”、“品牌隶属”等。
  • 工具选择:使用 Neo4j 或 GraphDB 构建和管理知识图谱。

b. 知识注入

  • 嵌入技术:将知识图谱中的关系嵌入到向量空间,增强模型对商品关系的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值