一、系统架构详解
1. 输入层
a. 用户行为数据
- 数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。
- 处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。
- 特征工程:
- 行为序列:用户行为的时间顺序,如最近浏览的商品类别。
- 频率与时长:浏览某类商品的频率和时长。
- 转化率:从浏览到购买的转化情况。
b. 商品数据
- 数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。
- 处理方式:标准化处理、向量化表示(如使用词嵌入或图嵌入)。
- 特征工程:
- 类别特征:商品所属的类别和子类别。
- 文本特征:商品描述、标题的自然语言处理(NLP)特征。
- 图像特征:商品图片的视觉特征(可选,用于视觉推荐)。
c. 社交关系
- 数据来源:用户的社交网络数据,如好友列表、关注用户的行为。
- 处理方式:构建社交图谱,分析好友的购买行为和偏好。
- 特征工程:
- 好友影响:好友的购买行为对用户的影响程度。
- 群体偏好:相似用户群体的整体偏好趋势。
d. 外部知识
- 数据来源:行业报告、市场趋势、节假日促销信息、季节性需求等。
- 处理方式:数据采集、知识图谱构建、信息抽取。
- 特征工程:
- 时间特征:结合节假日、季节变化调整推荐策略。
- 趋势特征:分析市场趋势,预测未来热门商品。
2. RAG 模块:检索增强生成
a. 检索模块
- 向量化工具:使用 FAISS(Facebook AI Similarity Search)或其他高效的向量检索库,将商品和用户数据转化为向量空间。
- 索引构建:
- 商品向量索引:为每个商品构建向量索引,提高检索效率。
- 用户向量索引:基于用户行为数据构建用户向量,用于个性化检索。
- 检索策略:
- 相似性检索:基于用户向量检索相似商品。
- 上下文检索:根据当前会话上下文检索相关内容,如最近浏览的商品类别。
b. 生成模块
- 大语言模型:采用 GPT-4 或其他先进的生成式语言模型。
- 上下文融合:将检索到的相关商品信息和知识注入生成模型,生成自然语言推荐内容。
- 个性化生成:根据用户特征和行为生成定制化的推荐语句。
3. KAG 模块:知识感知生成
a. 知识图谱构建
- 数据来源:整合内部商品数据和外部知识源,构建全面的知识图谱。
- 实体与关系:
- 实体:用户、商品、品牌、类别、配件等。
- 关系:如“相似购买”、“常被一起购买”、“品牌隶属”等。
- 工具选择:使用 Neo4j 或 GraphDB 构建和管理知识图谱。
b. 知识注入
- 嵌入技术:将知识图谱中的关系嵌入到向量空间,增强模型对商品关系的理解。