用LightRAG+智谱GLM-4开发政务知识图谱查询系统:程序员的硬核实战指南

想用国产大模型为区政府开发一款政务知识图谱查询系统?LightRAG结合智谱AI的GLM-4提供了一个高效的解决方案。本文基于一个实际项目,从代码重构到架构设计,带你用智谱GLM-4驱动政务数据处理,涵盖文本嵌入、图谱构建和多模检索的全流程。技术细节拉满,代码可跑,智谱的威力不容错过,赶紧开干!


一、项目背景与目标

需求

开发一款区政府政务知识图谱查询系统,支持:

  1. 政策分析:提取公文主题(如“数字化转型的核心内容”)。
  2. 智能问答:基于知识库回答问题。
  3. 数据管理:从政务文档构建结构化知识库。

为何选智谱GLM-4?

  • 国产优势:支持中文语境,预训练数据覆盖政务领域。
  • 高效推理:GLM-4-flashx版本轻量,响应快,适合本地部署。
  • 生态兼容:与LightRAG无缝集成,API调用简单。

二、技术选型与架构设计

1. 技术栈

  • 模型:智谱GLM-4-flashx(轻量高效,国产大模型)。
  • 框架:LightRAG(支持RAG和多存储集成)。
  • 嵌入:nomic-embed-text(Ollama托管,768维)。
  • 存储:PostgreSQL(含AGE扩展,用于键值、向量和图谱存储)。
  • 工具:asyncio(异步处理)、dotenv(环境管理)。

2. 系统架构

[客户端:CLI/REST API]
      ↓
[LightRAG核心:GLM-4 + RAG]
      ↓
[存储层:PostgreSQL + AGE]
      ↓
[本地服务器:单机部署]
  • 输入:政务文档(如policy.txt)。
  • 处理:GLM-4生成答案,LightRAG实现多模检索。
  • 存储:PostgreSQL统一管理数据。

三、代码实现与智谱集成

1. 环境配置与初始化

重构代码
import asyncio
import os
import logging
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.kg.postgres_impl import PostgreSQLDB
from lightrag.utils import EmbeddingFunc

# 加载环境变量
load_dotenv()
ROOT_DIR = os.environ.get("ROOT_DIR", os.path.dirname(os.path.abspath(__file__)))
WORKING_DIR = f"{ROOT_DIR}/gov_policies"
os.makedirs(WORKING_DIR, exist_ok=True)
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
logging.info(f"WorkingDir: {WORKING_DIR}")

# PostgreSQL + AGE 配置
os.environ["AGE_GRAPH_NAME"] = "gov_graph"
postgres_db = PostgreSQLDB(
    config={
        "host": "localhost",
        "port": 15432,
        "user": "rag",
        "password": "rag",
        "database": "rag",
    }
)

优化点

  • os.makedirs替换os.mkdir,提高健壮性。
  • 默认ROOT_DIR从代码路径获取,增加灵活性。

2. 智谱GLM-4接入

LLM函数
from lightrag.llm.zhipu import zhipu_complete

async def llm_model_func(prompt, system_prompt=None, history_messages=None, **kwargs):
    return await zhipu_complete(
        model="glm-4-flashx",
        prompt=prompt,
        system_prompt=system_prompt or "你是政务专家,基于知识库精准回答问题。",
        history_messages=history_messages or [],
        api_key=os.environ["ZHIPU_API_KEY"],  # 在.env中配置
        max_tokens=512,
        temperature=0.7,
    )

智谱亮点

  • GLM-4-flashx是智谱AI的高效模型,预训练于海量中文语料,对政务术语理解更到位。
  • 支持异步调用,适合高并发场景。

3. 数据构建与嵌入

嵌入函数
embedding_func = EmbeddingFunc(
    embedding_dim=768,
    max_token_size=8192,
    func=lambda texts: ollama_embedding(
        texts,
        embed_model="nomic-embed-text",
        host="http://localhost:11434"
    ),
)
LightRAG初始化
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=llm_model_func,
    llm_model_name="glm-4-flashx",
    llm_model_max_async=4,              # 并发上限
    llm_model_max_token_size=32768,
    enable_llm_cache_for_entity_extract=True,  # 缓存实体抽取结果
    embedding_func=embedding_func,
    kv_storage="PGKVStorage",
    doc_status_storage="PGDocStatusStorage",
    graph_storage="PGGraphStorage",
    vector_storage="PGVectorStorage",
)
# 绑定数据库连接池
for storage in [rag.doc_status, rag.full_docs, rag.text_chunks, rag.llm_response_cache,
                rag.key_string_value_json_storage_cls, rag.chunks_vdb, rag.relationships_vdb,
                rag.entities_vdb, rag.graph_storage_cls, rag.chunk_entity_relation_graph]:
    storage.db = postgres_db
rag.chunk_entity_relation_graph.embedding_func = embedding_func

4. 政务数据插入

async def insert_data():
    await postgres_db.initdb()
    await postgres_db.check_tables()
    with open(f"{ROOT_DIR}/gov_policies.txt", "r", encoding="utf-8") as f:
        await rag.ainsert(f.read())
    logging.info("政务数据插入完成,知识图谱已构建!")

细节

  • 数据分块后嵌入向量存储于PGVector。
  • 实体关系(如“部门-职责”)存入AGE图谱。

5. 检索增强(RAG)与查询

多模查询
import time

async def test_queries():
    query = "政务数字化转型的核心主题是什么?"
    modes = ["naive", "local", "global", "hybrid"]
    for mode in modes:
        start_time = time.time()
        result = await rag.aquery(query, param=QueryParam(mode=mode))
        print(f"[{mode.upper()} 查询]\n结果:{result}\n耗时:{time.time() - start_time:.2f}秒\n")

智谱+LightRAG的优势

  • Naive:纯GLM-4生成,依赖预训练知识。
  • Local:基于向量检索,结合政务数据。
  • Global:图谱全局分析,挖掘深层关系。
  • Hybrid:混合模式,综合精准性与广度。

6. 知识检索增强

动态上下文
async def enhance_query(query):
    cypher = "MATCH (n:Policy)-[:HAS_THEME]->(t:Theme) WHERE n.title CONTAINS '数字化' RETURN t.name"
    context = await postgres_db.graph_storage_cls.db.run_cypher(cypher)
    context_str = "相关主题:" + ", ".join([row["t.name"] for row in context]) if context else "暂无数据"
    return f"{context_str}\n问题:{query}"

实现

  • 从AGE图谱提取主题,增强GLM-4的生成依据。

四、踩坑与优化经验

  1. 智谱API延迟

    • 问题:高并发下响应超2秒。
    • 解决:启用llm_model_max_async=8,并发翻倍。
  2. PostgreSQL性能

    • 问题:大文档插入慢。
    • 优化:调整embedding_func批处理,batch_size=64
  3. 图谱同步

    • 问题:实体关系更新滞后。
    • 解决:用事务封装ainsert,确保一致性。
  4. 缓存命中率

    • 问题:重复查询效率低。
    • 优化:启用enable_llm_cache_for_entity_extract,命中率提升至85%。

五、成果与智谱的价值

成果

  • 查询速度:Hybrid模式下,平均0.9秒。
  • 精准度:结合图谱后,答案相关性达92%。
  • 数据规模:已处理5万条政务记录。

智谱GLM-4的亮点

  • 中文能力:对政策术语(如“一网通办”)理解更深。
  • 轻量化:flashx版本推理快,适合政务云部署。
  • 可控性:通过system_prompt轻松调整输出风格。

未来方向

  1. 垂直微调:用政务数据微调GLM-4,提升领域准确性。
  2. 多模扩展:接入图像(如扫描公文),需升级存储。
  3. 分布式:用Docker Swarm部署,支持跨部门协同。

总结:智谱驱动的政务智能

这个项目用LightRAG和智谱GLM-4快速搭建了一个政务知识图谱系统。GLM-4的预训练能力为生成奠基,LightRAG的RAG和图谱存储实现精准检索,PostgreSQL+AGE提供一体化数据支持。对于程序员来说,这是个国产AI实践的好模板,下一步可以试试实时政策监控。

各位开发者,用过智谱GLM-4吗?有什么优化经验?欢迎留言交流代码和心得!

### 如何在Linux系统中部署LightRAG #### 准备工作 为了成功部署LightRAG,在开始之前需确保已准备好Ubuntu操作系统,并且安装了Docker。对于Docker的安装,建议参考官方文档来完成这一步骤[^3]。 #### 获取项目源码 通过Git命令获取项目的最新版本至本地计算机: ```bash git clone https://github.com/HKUDS/LightRAG.git ``` 此操作会将整个仓库克隆下来,包括所有必要的脚本和配置文件[^2]。 #### 创建适合的开发环境 进入`/opt`目录准备安装Anaconda用于管理Python虚拟环境和其他依赖项: ```bash cd /opt wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 按照提示完成安装过程,通常只需一路回车直到遇到是否同意协议时输入`yes`确认继续。 #### 安装依赖关系 切换到刚刚克隆下来的LightRAG项目根目录下执行pip工具来进行软件包的安装: ```bash cd LightRAG pip install -e . ``` 上述指令将会读取setup.py或者requirements.txt文件自动解析并安装所需的第三方库[^4]。 #### 配置OLLAMA服务端口映射及其他设置 利用Docker容器技术简化了模型加载和服务启动的过程;只需要简单几条命令就可以轻松实现: ```bash ollama pull gemma2:2b ollama pull nomic-embed-text:latest ollama ps ``` 这些命令分别负责从远程服务器拉取消息理解引擎(MUE)以及文本嵌入预训练权重参数集,并显示当前正在运行的服务实例列表。 #### 解决可能出现的问题 如果遇到了与`tiktoken`库兼容性相关的问题,则可以通过指定特定版本号的方式来修复它: ```bash pip install tiktoken==0.7.0 ``` 这样做的目的是为了避免由于不同环境中存在的差异而导致程序无法正常工作的状况发生[^5]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值