大模型服务器 A100 H100 H200
英伟达 A100、H100、H200 GPU 对比及 H200 详细规格
在人工智能和高性能计算领域,英伟达的 GPU 一直是行业标杆。A100、H100 和 H200 这三款 GPU 代表了不同时期的顶尖技术,各自拥有独特的优势和适用场景。下面将对它们进行详细对比,并深入介绍 H200 的具体规格。
三款 GPU 综合对比
- A100:2020 年基于 Ampere 架构推出。它具有 6912 个 CUDA 核心和 432 个 Tensor 核心,显存提供 40GB/80GB HBM2e 两种版本,带宽达 1.6TB/s。支持 NVLink 以连接多 GPU 扩展算力,广泛用于深度学习训练、推理、科学计算和大规模数据分析等场景。
- H100:2022 年基于 Hopper 架构发布。拥有 16896 个 CUDA 核心和 528 个 Tensor 核心,80GB HBM3 显存,带宽高达 3.35TB/s 或更高。支持高带宽互联,配备专门优化 AI 大模型训练的 Transformer Engine,适用于大规模 AI 训练、HPC、企业级 AI 推理等,尤其在大型 AI 模型如 Llama、GPT、Stable Diffusion 训练中表现出色,也可用于复杂科学计算和大规模数据分析任务。
- H200:预计 2024 年第二季度发货,同样基于 Hopper 架构。首款提供 141GB HBM3e 内存,带宽 4.8TB/s。在高性能计算上比 CPU 快达 110 倍,处理 Llama2 70b 推理任务速度是 H100 的两倍。将在边缘计算、物联网(AIoT)、大型模型训练、生成式 AI 和高性能计算应用中发挥关键作用。
整体来看,H200 在性能上相比 A100 和 H100 有显著提升,特别是在内存容量、带宽和推理速度方面。但具体选择需根据实际需求和预算决定。对性能要求不高的场景,A100 有一定性价比;处理大型模型和复杂任务,H200 更合适;H100 则在众多场景中能提供均衡出色的性能。
H200 详细规格
H200 有 SXM 和 NVL 两种版本,以下是它们的详细规格对比:
特性 | H200 SXM¹ | H200 NVL¹ |
---|---|---|
计算性能 | ||
FP64 | 34 TFLOPS | 30 TFLOPS |
FP64 Tensor Core | 67 TFLOPS | 60 TFLOPS |
FP32 | 67 TFLOPS | 60 TFLOPS |
TF32 Tensor Core² | 989 TFLOPS | 835 TFLOPS |
BFLOAT16 Tensor Core² | 1,979 TFLOPS | 1,671 TFLOPS |
FP16 Tensor Core² | 1,979 TFLOPS | 1,671 TFLOPS |
FP8 Tensor Core² | 3,958 TFLOPS | 3,341 TFLOPS |
INT8 Tensor Core² | 3,958 TFLOPS | 3,341 TFLOPS |
显存相关 | ||
GPU Memory | 141GB | 141GB |
GPU Memory Bandwidth | 4.8TB/s | 4.8TB/s |
解码能力 | 7 NVDEC 7 JPEG | 7 NVDEC 7 JPEG |
安全特性 | ||
Confidential Computing | Supported | Supported |
功耗与散热 | ||
Max Thermal Design Power (TDP) | Up to 700W (configurable) | Up to 600W (configurable) |
多实例 GPU | Up to 7 MIGs @18GB each | Up to 7 MIGs @16.5GB each |
形态与互联 | ||
Form Factor | SXM | PCIe Dual - slot air - cooled |
Interconnect | NVIDIA NVLink™: 900GB/s PCIe Gen5: 128GB/s | 2 - or 4 - way NVIDIA NVLink bridge: 900GB/s per GPU PCIe Gen5: 128GB/s |
服务器选项 | NVIDIA HGX™ H200 partner and NVIDIA - Certified Systems™ with 4 or 8 GPUs | NVIDIA MGX™ H200 NVL partner and NVIDIA - Certified Systems with up to 8 GPUs |
软件支持 | Add - on | Included |
注意事项:
- ¹这些是初步规格,可能会有变动。
- ²计算速度是在有稀疏性的情况下得出。
若想查看 H200 更详细的数据手册,可点击此处。
随着deepseek r1&v3开源 我们忽然发现单机八卡的H100服务器无法部署deepseek r1 671B模型。
下面是我整理了一份关于DeepSeek R1系列模型参数和内存需求的报告:
DeepSeek R1 系列模型报告
引言
DeepSeek R1 系列模型以其卓越的性能和多样化的规模,在自然语言处理领域备受关注。本报告旨在详细介绍 DeepSeek R1 系列不同模型的参数量、数据类型以及内存需求,为用户选择和部署模型提供参考。
模型参数与内存需求
模型名称 | 参数量 (B) | 数据类型 | 内存需求 (GB) |
---|---|---|---|
R1 685B | 685 | FP8 | ≥ 890 |
R1 685B | 685 | INT4 | ≥ 450 |
V3 671B | 671 | FP8 | ≥ 870 |
V3 671B | 671 | INT4 | ≥ 440 |
R1-Distill-Llama-70B | 70 | BF16 | ≥ 180 |
R1-Distil1-Qwen-32B | 32 | BF16 | ≥ 80 |
R1-Distil1-Qwen-14B | 14 | BF16 | ≥ 40 |
R1-Disti11-Llama-8B | 8 | BF16 | ≥ 22 |
R1-Distill-Qwen-7B | 7 | BF16 | ≥ 20 |
R1-Disti11-0wen-1.5B | 1.5 | BF16 | ≥ 5 |
分析与讨论
- 模型规模与内存需求: 从表格中可以看出,模型参数量越大,所需的内存也就越多。这是因为模型参数需要存储在内存中,参数量越大,需要存储的数据就越多。
- 数据类型的影响: 不同的数据类型对内存的需求有显著影响。例如,FP8 (8 位浮点数) 相比 INT4 (4 位整数) 需要更多的内存空间。这是因为 FP8 使用更高的精度表示数值,需要更多的比特位来存储。
- 蒸馏模型的优势: 蒸馏模型 (Distilled Models) 通过知识蒸馏技术,在参数量较少的情况下,仍能保持较高的性能。因此,蒸馏模型所需的内存通常比原始模型要少。
结论与建议
- 在选择模型时,需要综合考虑模型性能和内存需求。如果内存资源有限,可以考虑选择较小规模的模型或使用 INT4 量化技术。
- 对于需要部署大规模模型的用户,可以考虑使用模型并行、流水线并行等技术,将模型拆分到多个设备上运行。
- 建议用户在部署模型之前,仔细评估其内存需求,并选择合适的硬件配置。
免责声明
本报告仅供参考,不构成任何投资或部署建议。用户在选择和部署模型时,应仔细评估自身需求和风险,并承担相应的责任。
总结
希望这份报告能为您提供有用的信息。如果您有任何疑问或需要进一步的帮助,请随时提出。
那么什么机器可以实现单卡部署deepseek r1 671B呢
接下来为大家介绍国内首款H200 八卡服务器
好的,这是一份关于H200服务器配置的详细介绍,包含了您提供的信息以及一些补充说明:
H200服务器配置介绍
型号
XF9680 60 chassis with 8 GPU, 8 x 2.5" NVMe only, Trusted Platform Module 2.0 V3
CPU
Intel Platinum 8558 48-Core 2.10 GHz
- 核心数: 48
- 主频: 2.10 GHz
- 说明: 这是一款高性能的服务器CPU,具有强大的计算能力,适合运行大型AI模型和进行复杂计算任务。
内存
64GB RDIM, 4800Mhz Dual (2T8 Memory)
- 容量: 64GB
- 类型: RDIM (Registered DIMM)
- 频率: 4800Mhz
- 通道: 双通道
- 说明: 高速内存可以提供更快的数据访问速度,提高服务器的整体性能。
硬盘1
Samsung PM9A3 3.8TB U.2 NVMe PCIe4
- 容量: 3.8TB
- 接口: U.2
- 类型: NVMe PCIe4
- 说明: NVMe (Non-Volatile Memory Express) 是一种高速存储协议,可以提供更快的数据读写速度。PCIe 4.0 接口进一步提高了数据传输速率。
硬盘2
Samsung PM9A3 M.2 960GB (RAID 1)
- 容量: 960GB
- 接口: M.2
- 类型: NVMe
- RAID: 1
- 说明: M.2 接口的NVMe SSD具有更小的尺寸和更高的性能。RAID 1 是一种数据冗余技术,可以提高数据的安全性。
GPU
NVIDIA DELTA-NEXT HGX H200 8 GPU SXM5
- 数量: 8
- 接口: SXM5
- 说明: NVIDIA H200 GPU 是目前最强大的AI计算卡之一,具有强大的并行计算能力和高带宽内存,适合进行深度学习训练和推理任务。HGX (High-Grade Graphics) 是 NVIDIA 设计的用于高性能计算的平台。
网卡1
NVIDIA ConnectX-7 MCX75310AAS-NEAT 400G/S
- 速率: 400Gb/s
- 说明: ConnectX-7 网卡支持高速网络连接,可以满足大规模数据传输的需求。
网卡2
Intel X550T2 Dual 10G copper PCIe (x8) LP Server Adapter
- 速率: 10Gb/s
- 接口: PCIe (x8)
- 说明: 这是一款双口网卡,提供两个10Gb/s的铜缆网络接口。
机箱尺寸
6U
- 说明: 6U (Unit) 是一种机架式服务器的尺寸单位,表示服务器的高度为 6 个单位。
质保期
36 months
- 说明: 36 个月(3 年)的质保期,提供售后服务保障。
一口价300万 相对230多万的H100比起来 H200只需要300万的价格 简直是白菜价
而且显存有1128G 完全可以部署 fp8 的 deepseek r1 & v3。心动不如行动。私聊我获取详细报价单。同时我要讲 只要我能发出来这个内容 我就有办法在国内搞到这个货源。