deepseek r1&v3 fp8 单机八卡H200部署解决方案

大模型服务器 A100 H100 H200

英伟达 A100、H100、H200 GPU 对比及 H200 详细规格

在人工智能和高性能计算领域,英伟达的 GPU 一直是行业标杆。A100、H100 和 H200 这三款 GPU 代表了不同时期的顶尖技术,各自拥有独特的优势和适用场景。下面将对它们进行详细对比,并深入介绍 H200 的具体规格。

三款 GPU 综合对比
  • A100:2020 年基于 Ampere 架构推出。它具有 6912 个 CUDA 核心和 432 个 Tensor 核心,显存提供 40GB/80GB HBM2e 两种版本,带宽达 1.6TB/s。支持 NVLink 以连接多 GPU 扩展算力,广泛用于深度学习训练、推理、科学计算和大规模数据分析等场景。
  • H100:2022 年基于 Hopper 架构发布。拥有 16896 个 CUDA 核心和 528 个 Tensor 核心,80GB HBM3 显存,带宽高达 3.35TB/s 或更高。支持高带宽互联,配备专门优化 AI 大模型训练的 Transformer Engine,适用于大规模 AI 训练、HPC、企业级 AI 推理等,尤其在大型 AI 模型如 Llama、GPT、Stable Diffusion 训练中表现出色,也可用于复杂科学计算和大规模数据分析任务。
  • H200:预计 2024 年第二季度发货,同样基于 Hopper 架构。首款提供 141GB HBM3e 内存,带宽 4.8TB/s。在高性能计算上比 CPU 快达 110 倍,处理 Llama2 70b 推理任务速度是 H100 的两倍。将在边缘计算、物联网(AIoT)、大型模型训练、生成式 AI 和高性能计算应用中发挥关键作用。

整体来看,H200 在性能上相比 A100 和 H100 有显著提升,特别是在内存容量、带宽和推理速度方面。但具体选择需根据实际需求和预算决定。对性能要求不高的场景,A100 有一定性价比;处理大型模型和复杂任务,H200 更合适;H100 则在众多场景中能提供均衡出色的性能。

H200 详细规格

H200 有 SXM 和 NVL 两种版本,以下是它们的详细规格对比:

特性H200 SXM¹H200 NVL¹
计算性能
FP6434 TFLOPS30 TFLOPS
FP64 Tensor Core67 TFLOPS60 TFLOPS
FP3267 TFLOPS60 TFLOPS
TF32 Tensor Core²989 TFLOPS835 TFLOPS
BFLOAT16 Tensor Core²1,979 TFLOPS1,671 TFLOPS
FP16 Tensor Core²1,979 TFLOPS1,671 TFLOPS
FP8 Tensor Core²3,958 TFLOPS3,341 TFLOPS
INT8 Tensor Core²3,958 TFLOPS3,341 TFLOPS
显存相关
GPU Memory141GB141GB
GPU Memory Bandwidth4.8TB/s4.8TB/s
解码能力7 NVDEC
7 JPEG
7 NVDEC
7 JPEG
安全特性
Confidential ComputingSupportedSupported
功耗与散热
Max Thermal Design Power (TDP)Up to 700W (configurable)Up to 600W (configurable)
多实例 GPUUp to 7 MIGs @18GB eachUp to 7 MIGs @16.5GB each
形态与互联
Form FactorSXMPCIe
Dual - slot air - cooled
InterconnectNVIDIA NVLink™: 900GB/s
PCIe Gen5: 128GB/s
2 - or 4 - way NVIDIA NVLink bridge:
900GB/s per GPU
PCIe Gen5: 128GB/s
服务器选项NVIDIA HGX™ H200 partner and NVIDIA - Certified Systems™ with 4 or 8 GPUsNVIDIA MGX™ H200 NVL partner and NVIDIA - Certified Systems with up to 8 GPUs
软件支持Add - onIncluded

注意事项

  • ¹这些是初步规格,可能会有变动。
  • ²计算速度是在有稀疏性的情况下得出。

若想查看 H200 更详细的数据手册,可点击此处

随着deepseek r1&v3开源 我们忽然发现单机八卡的H100服务器无法部署deepseek r1 671B模型。

下面是我整理了一份关于DeepSeek R1系列模型参数和内存需求的报告:

DeepSeek R1 系列模型报告

引言

DeepSeek R1 系列模型以其卓越的性能和多样化的规模,在自然语言处理领域备受关注。本报告旨在详细介绍 DeepSeek R1 系列不同模型的参数量、数据类型以及内存需求,为用户选择和部署模型提供参考。

模型参数与内存需求

模型名称参数量 (B)数据类型内存需求 (GB)
R1 685B685FP8≥ 890
R1 685B685INT4≥ 450
V3 671B671FP8≥ 870
V3 671B671INT4≥ 440
R1-Distill-Llama-70B70BF16≥ 180
R1-Distil1-Qwen-32B32BF16≥ 80
R1-Distil1-Qwen-14B14BF16≥ 40
R1-Disti11-Llama-8B8BF16≥ 22
R1-Distill-Qwen-7B7BF16≥ 20
R1-Disti11-0wen-1.5B1.5BF16≥ 5

分析与讨论

  • 模型规模与内存需求: 从表格中可以看出,模型参数量越大,所需的内存也就越多。这是因为模型参数需要存储在内存中,参数量越大,需要存储的数据就越多。
  • 数据类型的影响: 不同的数据类型对内存的需求有显著影响。例如,FP8 (8 位浮点数) 相比 INT4 (4 位整数) 需要更多的内存空间。这是因为 FP8 使用更高的精度表示数值,需要更多的比特位来存储。
  • 蒸馏模型的优势: 蒸馏模型 (Distilled Models) 通过知识蒸馏技术,在参数量较少的情况下,仍能保持较高的性能。因此,蒸馏模型所需的内存通常比原始模型要少。

结论与建议

  • 在选择模型时,需要综合考虑模型性能和内存需求。如果内存资源有限,可以考虑选择较小规模的模型或使用 INT4 量化技术。
  • 对于需要部署大规模模型的用户,可以考虑使用模型并行、流水线并行等技术,将模型拆分到多个设备上运行。
  • 建议用户在部署模型之前,仔细评估其内存需求,并选择合适的硬件配置。

免责声明

本报告仅供参考,不构成任何投资或部署建议。用户在选择和部署模型时,应仔细评估自身需求和风险,并承担相应的责任。

总结

希望这份报告能为您提供有用的信息。如果您有任何疑问或需要进一步的帮助,请随时提出。

那么什么机器可以实现单卡部署deepseek r1 671B呢

接下来为大家介绍国内首款H200 八卡服务器
好的,这是一份关于H200服务器配置的详细介绍,包含了您提供的信息以及一些补充说明:

H200服务器配置介绍

型号

XF9680 60 chassis with 8 GPU, 8 x 2.5" NVMe only, Trusted Platform Module 2.0 V3

CPU

Intel Platinum 8558 48-Core 2.10 GHz

  • 核心数: 48
  • 主频: 2.10 GHz
  • 说明: 这是一款高性能的服务器CPU,具有强大的计算能力,适合运行大型AI模型和进行复杂计算任务。

内存

64GB RDIM, 4800Mhz Dual (2T8 Memory)

  • 容量: 64GB
  • 类型: RDIM (Registered DIMM)
  • 频率: 4800Mhz
  • 通道: 双通道
  • 说明: 高速内存可以提供更快的数据访问速度,提高服务器的整体性能。

硬盘1

Samsung PM9A3 3.8TB U.2 NVMe PCIe4

  • 容量: 3.8TB
  • 接口: U.2
  • 类型: NVMe PCIe4
  • 说明: NVMe (Non-Volatile Memory Express) 是一种高速存储协议,可以提供更快的数据读写速度。PCIe 4.0 接口进一步提高了数据传输速率。

硬盘2

Samsung PM9A3 M.2 960GB (RAID 1)

  • 容量: 960GB
  • 接口: M.2
  • 类型: NVMe
  • RAID: 1
  • 说明: M.2 接口的NVMe SSD具有更小的尺寸和更高的性能。RAID 1 是一种数据冗余技术,可以提高数据的安全性。

GPU

NVIDIA DELTA-NEXT HGX H200 8 GPU SXM5

  • 数量: 8
  • 接口: SXM5
  • 说明: NVIDIA H200 GPU 是目前最强大的AI计算卡之一,具有强大的并行计算能力和高带宽内存,适合进行深度学习训练和推理任务。HGX (High-Grade Graphics) 是 NVIDIA 设计的用于高性能计算的平台。

网卡1

NVIDIA ConnectX-7 MCX75310AAS-NEAT 400G/S

  • 速率: 400Gb/s
  • 说明: ConnectX-7 网卡支持高速网络连接,可以满足大规模数据传输的需求。

网卡2

Intel X550T2 Dual 10G copper PCIe (x8) LP Server Adapter

  • 速率: 10Gb/s
  • 接口: PCIe (x8)
  • 说明: 这是一款双口网卡,提供两个10Gb/s的铜缆网络接口。

机箱尺寸

6U

  • 说明: 6U (Unit) 是一种机架式服务器的尺寸单位,表示服务器的高度为 6 个单位。

质保期

36 months

  • 说明: 36 个月(3 年)的质保期,提供售后服务保障。

一口价300万 相对230多万的H100比起来 H200只需要300万的价格 简直是白菜价
而且显存有1128G 完全可以部署 fp8 的 deepseek r1 & v3。心动不如行动。私聊我获取详细报价单。同时我要讲 只要我能发出来这个内容 我就有办法在国内搞到这个货源。

### 关于 Deepseek671b 和 H2O-141 的技术信息 对于 Deepseek671b 和 H2O-141 这两个特定的技术或产品,当前的信息较为有限。然而,在北京大学多媒体信息处理重点实验室以及PKU-Anker LLM 实验室的工作中提到的研究进展可能与此类大型模型有关[^1]。 #### Deepseek671b 技术概述 Deepseek671b 可能是指一种具有大规模参数量的语言模型或其他类型的深度学习模型。这类模型通常具备强大的自然语言理解和生成能力,适用于多种高级应用场合,如对话系统、机器翻译等。由于其庞大的规模,该模型可能会面临与 GQA/MQA 等现代高效解码架构的内存共享设计冲突的问题,这会限制内存访问优化的潜力[^2]。 #### H2O-141 技术分析 关于 H2O-141 的具体细节同样不详尽,但从命名推测可能是某个特定版本或是针对某一领域定制化的解决方案。如果这是一个基于水(H₂O)相关的模拟工具或者是某种化学物质,则需要查阅更专业的文献来获取确切的功能描述和技术规格。 为了获得最准确的产品说明和技术文档,建议直接联系制造商或开发者团队索取官方发布的使用手册及相关资料。此外,也可以通过学术数据库和专利库进一步探索这两个项目的背景信息和发展历程。 ```python # 示例代码用于展示如何查询相关资源(假设存在API接口) import requests def fetch_technical_docs(model_name): url = f"https://api.example.com/search?query={model_name}" response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception("Failed to retrieve documents") try: deepseek_info = fetch_technical_docs('Deepseek671b') h2o_info = fetch_technical_docs('H2O-141') except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值