Python什么都知道之手机电池的秘密

本文利用Python分析手机电池数据,探讨电池状态、容量、温度之间的关系。发现电量与电池容量呈正相关,温度对容量有一定影响。通过数据可视化展示,解释了为何冬天电池感觉不耐用,强调了温度对手机电池性能的影响。
摘要由CSDN通过智能技术生成

手机已经渐渐进化成了人们身体的一部分,手机电量也就跟着成了大家的声明指数(笑)。你是不是觉得夏天的电池比冬天耐用?为什么容量大的电池还是感觉不够?今天就来用Python告诉你,手机电量藏着的小秘密。(华为ICT学堂大数据学院倾情奉献~ https://www.ictxuetang.com/

首先,我们需要获取一个数据集,然后使用Python中的数据分析包和可视化工具,对手机电池数据进行基本分析。这个数据集主要包含:电池指定时刻的状态信息(Status),包括电池的健康状态(Health)、电池当前的含电量(Level)、含电量度量方式(Scale):百分数、接入状态(Plugged)、电池容量(Voltage)和电池温度(Temperature)。我们也主要分析这些变量间的关系,话不多说,让我们开始吧。

步骤1:加载包

这里首先是加载数据分析所需要使用的数值计算包和可视化工具包,代码如下:

from mpl_toolkits.mplot3d import Axes3D

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt # plotting

import numpy as np # linear algebra

import os # accessing directory structure

mport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

步骤2:读取数据

for dirname, _, filenames in os.walk('D:\workspace\online\phone-battery'):

   for filename in filenames:

        print(os.path.join(dirname, filename))

输出如下结果:

步骤3:定义数据分布函数

定义数据分布函数,主要用于查看各属性的数据分布,了解各属性的取值特征,并通过直方图实现可视化展示。这样我们可以清楚数据集里的各个值的情况,以确定分析思路和确认数据集是否需要清除冗余字段等操作。

# Distribution graphs (histogram/bar graph) of column data

 def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow):

    nunique = df.nunique()

df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] # For displaying purposes, pick columns that have b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值