目标检测
zhangshen12356
这个作者很懒,什么都没留下…
展开
-
pytorch简单实现yolo v1
首先本文的参考代码来自于添加链接描述和添加链接描述yolo v1 原理简析yolo v1的原理相较于其他的一些目标检测算法稍微没那么复杂,Yolo采用一个单独的CNN模型实现end-to-end的目标检测模型。检测框架整个框架把输入图片分成S×S个grid,然后每个格子预测两个bbox,每个bbox包含五个预测参数:x, y, w, h, c。前四个参数都是归一化之后的,其中c代表置信度,表示预测的这个框属于哪一个物体。另外每个格子都预测20个假定类别的概率,网络的最后输出为S×S×30(52+20原创 2020-05-10 17:34:01 · 5500 阅读 · 4 评论 -
目标检测(SSD)-数据篇
SSD代码详解数据篇,旨在全方位介绍数据从下载到数据增强,最后封装为pytorch的data_loader过程。其中,涉及了目标检测领域绝大部分的数据增强方式,亮度、对比度、色调、裁剪、扩充等等方法。目录下载数据数据dataset数据增强1. 数据类型转换2. Transform Compose3. IOU计算4. bbox坐标变化5. 图片 Resize6. 图片色彩转...转载 2020-03-28 17:43:11 · 748 阅读 · 1 评论