预备知识
归一化
归一化就是要把需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。
首先归一化是为了后面数据处理的方便,其次是保证程序运行时收敛加快。归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在某个区间上是统计的坐标分布。归一化有同一、统一和合一的意思。
归一化的目的,是使得没有可比性的数据变得具有可比性,同时又保持相比较的两个数据之间的相对关系,如大小关系;或是为了作图,原来很难在一张图上作出来,归一化后就可以很方便的给出图上的相对位置等。
opencv中提供了四种归一化的方法:
NORM_MINMAX
NORM_INF
NORM_L1
NORM_L2
最常用的就是NORM_MINMAX归一化方法
L1 归一化(依据是:和为1) L2 归一化(依据是:单位向量为1,也即每个数除以 根号下所有数的平方和)
2.0+8.0+10.0=20
2.0 0.1 (2.0/20.0)
8.0 0.4 (8.0/20.0)
10.0 0.5 (10.0/20.0)
L2 归一化(依据是:单位向量为1,也即每个数除以 根号下所有数的平方和)
2.0 0.15
8.0 0.62
10.0 0.77
NORM_INF 归一化(依据是:最大值)
2.0 0.2 (2.0/10.0)
8.0 0.8 (8.0/10.0)
10.0 1.0 (10.0/10.0)
NORM_MINMAX 归一化(依据是:delta=max-min,也即最小值为0,最大值为1)
2.0 0.0 (0.0/8.0)
8.0 0.75 (6.0/8.0)
10.0 1.0 (8.0/8.0)
import cv2 as cv
import numpy as np
src=cv.imread(r’C:\Users\zs\Desktop\defm.jpg’)
cv.namedWindow(‘input’,cv.WINDOW_AUTOSIZE)
cv.imshow(‘input’,src)
gray=cv.cvtColor(src,cv.COLOR_BGR2GRAY)
gray=np.float32(gray)
print(gray)
dst=np.zeros(gray.shape,dtype=np.float32)
cv.normalize(gray,dst=dst,alpha=0,beta=1.0,norm_type=cv.NORM_MINMAX)
#alpha和beta的意义是,alpha:range normalization模式的最小值
beta:range normalization模式的最大值,不用于norm normalization(范数归一化)模式
print(dst)
cv.imshow(‘NORM_MINMAX’,np.uint8(dst*255)) #NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用
dst=np.zeros(gray.shape,dtype=np.float32)
cv.normalize(gray,dst=dst,alpha=1.0,beta=0,norm_type=cv.NORM_INF)#NORM_INF:归一化数组的C-范数(绝对值的最大值)
print(dst)
cv.imshow(‘NORM_L1’,np.uint8(dst*10000000))#NORM_L1 : 归一化数组的L1-范数(绝对值的和)
dst=np.zeros(gray.shape,dtype=np.float32)
cv.normalize(gray,dst=dst,alpha=1.0,beta=0,norm_type=cv.NORM_L2)#NORM_L2: 归一化数组的(欧几里德)L2-范数
print(dst)
cv.imshow(‘NORM_L2’,np.uint8(dst*10000))
cv.waitKey(0)
cv.destroyAllWindows()