凸优化学习笔记 7:拟凸函数 Quasiconvex Function

个人博客地址 Glooow,欢迎光临~~~

1. 拟凸函数定义

拟凸函数(quasiconvex function) 的定义为:若 dom f \text{dom}f domf 为凸集,且对任意的 α \alpha α,其下水平集
S α = { x ∈ dom f ∣ f ( x ) ≤ α } S_\alpha = \{x\in\text{dom}f | f(x)\le\alpha\} Sα={ xdomff(x)α}
都是凸集,则 f f f 为拟凸函数。

类似的有拟凹函数(quasiconcave) 的定义。如果一个函数既是拟凸的,又是拟凹的,那么它是拟线性(quasilinear) 的。

Reamrks:对于拟线性函数,要求其上水平集和下水平集同时是凸集,因此简单理解,其在某种意义上具有“单调性”。比如 e x , log ⁡ x e^x,\log x ex,logx 等。

拟凸函数 各种函数的关系
在这里插入图片描述 在这里插入图片描述

一些常见的拟凸/拟凹/拟线性函数比如

拟凸函数

  • f ( x ) = ∣ x ∣ f(x)=\sqrt{|x|} f(x)=x
  • f ( x ) = ∥ x − a ∥ 2 ∥ x − b ∥ 2 , dom f = { x ∣ ∥ x − a ∥ 2 ≤ ∥ x − b ∥ 2 } f(x)=\frac{\Vert x-a\Vert_2}{\Vert x-b\Vert_2},\text{dom}f=\{x|\Vert x-a\Vert_2 \le \Vert x-b\Vert_2\} f(x)=xb2xa2,domf={ xxa2xb2}

拟凹函数

  • f ( x ) = x 1 x 2 f(x)=x_1x_2 f(x)=x1x2 on R 2 R^2 R2

拟线性函数

  • ceil ( x ) = inf ⁡ { z ∈ Z ∣ z ≥ x } \text{ceil}(x)=\inf\{z\in Z|z\ge x\} ceil(x)=inf{ zZzx}
  • log ⁡ x \log x logx on R + + R_{++} R++
  • f ( x ) = a T x + b c T x + d , dom f = { c T x + d > 0 } f(x)=\frac{a^Tx+b}{c^Tx+d},\text{dom}f=\{c^Tx+d >0\}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值