个人博客地址 Glooow,欢迎光临~~~
文章目录
1. 拟凸函数定义
拟凸函数(quasiconvex function) 的定义为:若 dom f \text{dom}f domf 为凸集,且对任意的 α \alpha α,其下水平集
S α = { x ∈ dom f ∣ f ( x ) ≤ α } S_\alpha = \{x\in\text{dom}f | f(x)\le\alpha\} Sα={
x∈domf∣f(x)≤α}
都是凸集,则 f f f 为拟凸函数。
类似的有拟凹函数(quasiconcave) 的定义。如果一个函数既是拟凸的,又是拟凹的,那么它是拟线性(quasilinear) 的。
Reamrks:对于拟线性函数,要求其上水平集和下水平集同时是凸集,因此简单理解,其在某种意义上具有“单调性”。比如 e x , log x e^x,\log x ex,logx 等。
拟凸函数 | 各种函数的关系 |
---|---|
![]() |
![]() |
一些常见的拟凸/拟凹/拟线性函数比如
拟凸函数
- f ( x ) = ∣ x ∣ f(x)=\sqrt{|x|} f(x)=∣x∣
- f ( x ) = ∥ x − a ∥ 2 ∥ x − b ∥ 2 , dom f = { x ∣ ∥ x − a ∥ 2 ≤ ∥ x − b ∥ 2 } f(x)=\frac{\Vert x-a\Vert_2}{\Vert x-b\Vert_2},\text{dom}f=\{x|\Vert x-a\Vert_2 \le \Vert x-b\Vert_2\} f(x)=∥x−b∥2∥x−a∥2,domf={ x∣∥x−a∥2≤∥x−b∥2}
拟凹函数
- f ( x ) = x 1 x 2 f(x)=x_1x_2 f(x)=x1x2 on R 2 R^2 R2
拟线性函数
- ceil ( x ) = inf { z ∈ Z ∣ z ≥ x } \text{ceil}(x)=\inf\{z\in Z|z\ge x\} ceil(x)=inf{ z∈Z∣z≥x}
- log x \log x logx on R + + R_{++} R++
- f ( x ) = a T x + b c T x + d , dom f = { c T x + d > 0 } f(x)=\frac{a^Tx+b}{c^Tx+d},\text{dom}f=\{c^Tx+d >0\}