马尔可夫过程2 | 状态空间

6.4 状态空间的分解

定义:设 A ⊂ S A\subset S AS,若对任意 i ∈ A i\in A iA j ∉ A j\notin A j/A,都有 p i j = 0 p_{ij}=0 pij=0,称 A A A闭集。若 A A A 的状态是相通的,则 A A A不可约的。

引理 6.1 A A A 为闭集的充要条件为:任意 i ∈ A i\in A iA j ∉ A j\notin A j/A 都有 p i j ( n ) = 0 , n ≥ 1 p_{ij}^{(n)}=0,n\ge1 pij(n)=0,n1

推论:若 A A A 是闭集,对任意状态 i ∈ A i\in A iA 恒有 ∑ j ∈ A p i j ( n ) = 1 \sum_{j\in A}p_{ij}^{(n)}=1 jApij(n)=1

定理 6.5:所有常返态构成一个闭集。

推论:不可约马尔科夫链,所有状态都是常返的,或者所有状态都是非常返的。

定理 6.6:状态空间 S S S 可以分解为 S = T ∪ C = T ∪ C 1 ⋯ ∪ C h ⋯ S = T\cup C = T\cup C_1 \cdots \cup C_h \cdots S=TC=TC1Ch,其中 T T T 表示非常返状态的集合, C i C_i Ci 为基本的常返闭集,且有

  1. 对任一确定的 k , C k k,C_k k,Ck 中任意两个状态互通;
  2. C k ∩ C l = ∅ , ∀ h ≠ l C_k\cap C_l = \varnothing,\forall h\ne l CkCl=,h=l

定理 6.7:有限状态马尔科夫链具有如下性质:

  1. 状态空间 S S S 可分解为 S = T ∪ C = T ∪ C 1 ⋯ ∪ C h S = T\cup C = T\cup C_1 \cdots \cup C_h S=TC=TC1Ch,其中 T T T 表示非常返状态的集合, C i C_i Ci 为基本的常返闭集;
  2. 非常返状态集合 T T T 一定不是闭集;
  3. 没有零常返状态;
  4. 必有正常返状态;
  5. 不可约马氏链的的状态都是正常返态;
  6. 任意闭集 C i C_i Ci 上的 n n n 步转移矩阵为随机矩阵。

6.5 极限特性与平稳分布

6.5.1 极限特性

定理 6.7:若状态 j j j 为非常返态或零常返态,则对任意 i ∈ S i \in S iS,有 lim ⁡ n → ∞ p i j ( n ) = 0 \lim_{n\to\infty}p_{ij}^{(n)}=0 limnpij(n)=0

推论 6.7.1:若马尔科夫链有一个零常返态,则必有无穷多个零常返态。

6.5.2 平稳分布

定义:一个定义在 S S S 上的概率分布 π = ( π 1 , π 2 , . . . , π i , . . . ) \pi=(\pi_1,\pi_2,...,\pi_i,...) π=(π1,π2,...,πi,...) 称为马尔科夫链的平稳分布,如果有 π = π P \pi=\pi P π=πP

定理 6.9:若马尔科夫链是不可约的遍历链,则 { π i = 1 / μ i } \{\pi_i = 1 / \mu_i\} {πi=1/μi} π = π P ( π i ≥ 0 , ∑ i ∈ S π i = 1 ) \pi=\pi P(\pi_i\ge0,\sum_{i\in S}\pi_i=1) π=πP(πi0,iSπi=1)唯一解

推论 6.9.1:不可约遍历链恒有唯一的平稳分布,且 π j = lim ⁡ n → ∞ p i j ( n ) \pi_j=\lim_{n\to\infty} p_{ij}^{(n)} πj=limnpij(n)

定理 6.10:令 C + C_+ C+ 为马尔科夫链中全体正常返状态构成的集合,则有

  1. 平稳分布不存在的充要条件为 C + = ∅ C_+=\varnothing C+=
  2. 平稳分布唯一存在的充要条件为只有一个基本正常返闭集;
  3. 若马尔科夫链有多于一个基本正常返闭集,则其平稳分布有无穷多个。

定理 6.11:关于有限状态的马尔科夫链

  1. 有限状态马尔科夫链的平稳分布总存在;
  2. 有限不可约非周期的马尔科夫链存在唯一的平稳分布;
  3. 若有多于一个基本正常返闭集,则其平稳分布有无穷多个;

栗子(平衡方程及其应用):对非周期正常返的离散马氏链,平稳分布存在且满足 π P = π \pi P=\pi πP=π,可以写成 π j ( 1 − P j j ) = ∑ i ≠ j , i ∈ S π i P i j \pi_j(1-P_{jj}) = \sum_{i\ne j,i\in S} \pi_i P_{ij} πj(1Pjj)=i=j,iSπiPij,这被称为离散马氏链的平衡方程。左边表示从状态 j j j 流出的量,右边表示从其他状态流入状态 j j j 的量,在讨论一些实际工程问题时,可以借助平衡方程求解系统平稳分布。

6.6 转移矩阵的平均极限

一般情况下, n → ∞ n\to\infty n P n P^n Pn 的极限未必存在,主要是因为 P n P^n Pn 可能有周期性。为了消除周期性,最直接的方法就是取平均。

定理 6.12:设 P P P 为有限马氏链的转移矩阵,则 L : = lim ⁡ n → ∞ 1 n ( I + P + ⋯ + P n − 1 ) L:=\lim_{n\to\infty} \frac{1}{n}(I+P+\cdots+P^{n-1}) L:=limnn1(I+P++Pn1) 存在,且满足 L P = P L = L = L 2 LP = PL = L = L^2 LP=PL=L=L2

推论:设有限不可约马氏链的转移矩阵为 P P P,平稳分布为 π \pi π L = ( l i j ) = lim ⁡ n → ∞ 1 n ( I + P + ⋯ + P n − 1 ) L=(l_{ij})=\lim_{n\to\infty} \frac{1}{n}(I+P+\cdots+P^{n-1}) L=(lij)=limnn1(I+P++Pn1),则 π L = π \pi L=\pi πL=π,且 π j = l i j / ∑ k = 1 N l i k \pi_j=l_{ij} / \sum_{k=1}^N l_{ik} πj=lij/k=1Nlik

定理 6.13:设 P P P 是有 m m m 个状态的不可约马氏链的转移矩阵,则平稳分布概率为

π = ( 1 , . . . , 1 ) ( I − P + 1 ) − 1 \pi = (1,...,1)(I-P+{\mathbb 1})^{-1} π=(1,...,1)(IP+1)1,其中 1 {\mathbb 1} 1 为全 1 的 m × m m\times m m×m 矩阵。

证明:关键是要证明矩阵 ( I − P + 1 ) (I-P+{\mathbb 1}) (IP+1) 可逆。

Note:马尔科夫链在随机过程里面是比较简单的部分,大部分结论都很直观,凭直观感觉就能得到。

实际上这章马尔科夫链的主要内容就是在讨论几种状态:非常返态、正常返态、零常返态。归结起来,现在想象一个马尔可夫链的状态转移图,有很多节点(状态)和有向边(转移概率)。

首先对于几种状态的区别:

  1. 正常返态就是说从一个状态开始,经过有限步总能再次回到当前状态,并且这个平均回转时间是有限的(中华好男人,常回家看看);
  2. 零常返态就是说从一个状态开始,经过有限步总能再次回到当前状态,但这个平均回转时间是无穷的(渣男海王,开空头支票);
  3. 非常返态就是说从一个状态开始,经过有限步之后就再也不能返回当前状态了(恩断义绝);

如何判断每个节点的状态类型,基本只需要下面两条原则:

  1. 如果两个状态相通,那么他们同为常返态或非常返态。
    1. 那么如果两个节点之间有双向边,他们一定是同一类型态;要出现常返态和非常返态的区别一定是由于单向边的存在;
    2. 进一步的,一个连通子图里面的所有状态一定是同一类型;要出现常返态和非常返态的区别,一定是两个连通子图 A , B A,B A,B 之间只有单向边;
    3. 假如只有 A A A B B B 的单向边,那么连通子图 B B B 中的节点一定都是非常返态。
  2. 零常返态只可能出现在状态个数为无穷的时候。

极限分布/平稳分布是怎样:

  1. 极限分布与初始分布有关,平稳分布只与状态转移链本身的性质有关;
  2. 由于最终一定会收敛到常返态,平稳分布一定是只对常返态非零;
  3. 只考虑常返态的集合,平稳分布就是转移概率矩阵 P P P 的左特征向量;

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值