连续参数马尔可夫链

7.1 定义与基本概念

定义:设随机过程 X = { X ( t ) , t ≥ 0 } X=\{X(t),t\ge0\} X={X(t),t0},状态空间 S S S,对任意 0 ≤ t 0 < t 1 < ⋯ < t n < t n + 1 0\le t_0 < t_1 < \cdots < t_n < t_{n+1} 0t0<t1<<tn<tn+1 i k ∈ S i_k\in S ikS,若 P ( X ( T k ) = i k , 0 ≤ k ≤ n ) > 0 P(X(T_k)=i_k,0\le k\le n) > 0 P(X(Tk)=ik,0kn)>0
P ( X ( t n + 1 ) = i n + 1 ∣ X ( t k ) = i k , 0 ≤ k ≤ n ) = P ( X ( t n + 1 ) = i n + 1 ∣ X ( t n ) = i n ) P(X(t_{n+1})=i_{n+1} | X(t_k)=i_k,0\le k\le n) = P(X(t_{n+1})=i_{n+1} | X(t_n)=i_n) P(X(tn+1)=in+1X(tk)=ik,0kn)=P(X(tn+1)=in+1X(tn)=in)
则称 X X X连续参数的马氏链。若对任意的 s , t ≥ 0 s,t\ge0 s,t0 i , j ∈ S i,j\in S i,jS
P ( X ( s + t ) = j ∣ X ( s ) = i ) = P ( X ( t ) = j ∣ X ( 0 ) = i ) = P i j ( t ) P(X(s+t)=j | X(s)=i) = P(X(t)=j|X(0)=i) = P_{ij}(t) P(X(s+t)=jX(s)=i)=P(X(t)=jX(0)=i)=Pij(t)
X X X齐次马氏链

对于连续参数马氏链,在原点处有 P i j ( 0 ) = δ i j P_{ij}(0)=\delta_{ij} Pij(0)=δij,因此 P ( 0 ) = I P(0)=I P(0)=I。除此之外假设其在原点处连续,即 lim ⁡ t → 0 P i j ( t ) = δ i j , lim ⁡ t → 0 P ( t ) = I \lim_{t\to 0} P_{ij}(t)=\delta_{ij},\lim_{t\to0}P(t)=I limt0Pij(t)=δij,limt0P(t)=I。类比离散参数的马氏链,可以得到类似的 C-K 方程 P ( s + t ) = P ( s ) P ( t ) P(s+t)=P(s)P(t) P(s+t)=P(s)P(t)

7.2 转移概率矩阵

根据 C-K 方程可以猜测 P ( t ) = e t Q P(t)=e^{tQ} P(t)=etQ,泰勒展开表示为 P ( t ) = I + ∑ n = 1 ∞ t n n ! Q n P(t)=I + \sum_{n=1}^{\infty} \frac{t^n}{n!}Q^n P(t)=I+n=1n!tnQn P ( t ) P(t) P(t) 完全由 Q Q Q 确定,并且有 P ′ ( 0 ) = lim ⁡ t → 0 P ( t ) − I t = Q P'(0)=\lim_{t\to0}\frac{P(t)-I}{t}=Q P(0)=limt0tP(t)I=Q

上面只是猜测,那么是否真的存在这样一个 Q Q Q 呢?下面两个定理给出结论。

定理 7.1:对 i ∈ S i\in S iS,极限 − q i i = lim ⁡ t → 0 1 − P i i ( t ) t -q_{ii}=\lim_{t\to0}\frac{1-P_{ii}(t)}{t} qii=limt0t1Pii(t) 存在,但可能是无穷。

定理 7.2:对 i ∈ S i\in S iS,极限 q i j = lim ⁡ t → 0 P i j ( t ) t q_{ij}=\lim_{t\to0}\frac{P_{ij}(t)}{t} qij=limt0tPij(t) 存在且有限。

证明:略。

Remark:实际应用中, P ( t ) P(t) P(t) 很难获得,一般可以求得 Q Q Q,此时 e t Q = lim ⁡ n → ∞ ( I + Q t / n ) n e^{tQ} = \lim_{n\to\infty}(I + Qt/n)^n etQ=limn(I+Qt/n)n。如果取 n = 2 k n=2^k n=2k 的形式,只需要 k k k 次矩阵乘法即可。

推论 7.1:对任意 i ∈ S i\in S iS 0 ≤ ∑ i ≠ j q i j ≤ q i i 0\le \sum_{i\ne j}q_{ij}\le q_{ii} 0i=jqijqii

证明:
KaTeX parse error: Undefined control sequence: \varliminf at position 9: q_{ii}=\̲v̲a̲r̲l̲i̲m̲i̲n̲f̲_{t\to0} \frac{…
推论 7.2:当 S S S 为有限状态空间时, ∑ i ≠ j q i j = q i i < ∞ \sum_{i\ne j}q_{ij}= q_{ii} < \infty i=jqij=qii<

7.3 Kolmogorov前向后向微分方程

定义:如果 Q Q Q 满足 ∀ i ∈ S \forall i\in S iS ∑ j ≠ i q i j = q i i < ∞ \sum_{j\ne i}q_{ij} = q_{ii} < \infty j=iqij=qii<,则称 Q Q Q 为保守矩阵。

定理 7.3:设马氏链 X = { X ( t ) , t ≥ 0 } X=\{X(t),t\ge0\} X={X(t),t0} Q = P ′ ( 0 ) Q=P'(0) Q=P(0),当 S S S有限集时, P ′ ( t ) = P ( t ) Q = Q P ( t ) P'(t)=P(t)Q=QP(t) P(t)=P(t)Q=QP(t)

Remark:当 S S S 为可数状态时,前向方程与后向方程不一定成立,根据 Fatu 引理有 P ′ ( t ) ≥ P ( t ) Q , P ′ ( t ) ≥ Q P ( t ) P'(t)\ge P(t)Q,P'(t)\ge QP(t) P(t)P(t)Q,P(t)QP(t)

定理 7.4:当 S S S可列个状态 Q Q Q 为保守矩阵时,后向方程 P ′ ( t ) = Q P ( t ) P'(t)=QP(t) P(t)=QP(t) 成立。

7.4 平稳分布与极限分布及其矩阵计算

类似离散马氏链,可以定义状态的连通关系。

定义:若 ∫ 0 ∞ P i i ( t ) d t = + ∞ \int_0^\infty P_{ii}(t)dt = +\infty 0Pii(t)dt=+,则称状态 i i i常返态,否则称为非常返态。

定义:设 i i i 为常返态,若 lim ⁡ t → ∞ P i i ( t ) > 0 \lim_{t\to\infty}P_{ii}(t) > 0 limtPii(t)>0,则称为正常返态,若 lim ⁡ t → ∞ P i i ( t ) = 0 \lim_{t\to\infty}P_{ii}(t) = 0 limtPii(t)=0,称为零常返态。

定义:若概率分布 π = { π i , i ∈ S } \pi=\{\pi_i,i\in S\} π={πi,iS} 满足 π = π P ( t ) \pi=\pi P(t) π=πP(t),称 π \pi π X X X 的平稳分布。

定理 7.5:设 X X X 是有限不可约连续马氏链,对任意 i , j ∈ S i,j\in S i,jS,有 lim ⁡ t → ∞ P i j ( t ) = p j \lim_{t\to\infty}P_{ij}(t)=p_j limtPij(t)=pj 存在,且与状态 i i i 无关。

证明:略。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
生成连续时间马尔可夫链的一种常用方法是使用指数分布来模拟时间间隔。具体步骤如下: 1. 定义状态空间和状态转移矩阵。 2. 定义每个状态的速率参数,即从该状态转移到其他状态的速率。 3. 初始化状态和时间。 4. 生成一个指数分布的随机数,用于模拟从当前状态转移到下一个状态所需的时间。 5. 根据状态转移矩阵和当前状态的速率参数,计算从当前状态转移到每个可能的下一个状态的概率。 6. 使用生成的随机数和计算出的概率,确定下一个状态,并更新时间和状态。 7. 重复步骤4-6,直到达到所需的状态序列长度。 下面是一个简单的 MATLAB 代码示例: ```matlab % 定义状态空间和状态转移矩阵 states = [1 2 3]; transition_matrix = [0.2 0.4 0.4; 0.3 0.2 0.5; 0.1 0.5 0.4]; % 定义每个状态的速率参数 rates = [0.5 1.0 0.8]; % 初始化状态和时间 current_state = 1; time = 0; % 生成状态序列 num_states = 100; state_sequence = zeros(1, num_states); time_sequence = zeros(1, num_states); for i = 1:num_states % 生成指数分布的随机数 dt = exprnd(1/rates(current_state)); % 计算从当前状态转移到每个可能的下一个状态的概率 prob = transition_matrix(current_state, :); % 确定下一个状态 next_state = randsample(states, 1, true, prob); % 更新时间和状态 time = time + dt; state_sequence(i) = current_state; time_sequence(i) = time; current_state = next_state; end % 绘制状态序列随时间的变化图 plot(time_sequence, state_sequence); xlabel('Time'); ylabel('State'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值