7.1 定义与基本概念
定义:设随机过程 X = { X ( t ) , t ≥ 0 } X=\{X(t),t\ge0\} X={
X(t),t≥0},状态空间 S S S,对任意 0 ≤ t 0 < t 1 < ⋯ < t n < t n + 1 0\le t_0 < t_1 < \cdots < t_n < t_{n+1} 0≤t0<t1<⋯<tn<tn+1, i k ∈ S i_k\in S ik∈S,若 P ( X ( T k ) = i k , 0 ≤ k ≤ n ) > 0 P(X(T_k)=i_k,0\le k\le n) > 0 P(X(Tk)=ik,0≤k≤n)>0 有
P ( X ( t n + 1 ) = i n + 1 ∣ X ( t k ) = i k , 0 ≤ k ≤ n ) = P ( X ( t n + 1 ) = i n + 1 ∣ X ( t n ) = i n ) P(X(t_{n+1})=i_{n+1} | X(t_k)=i_k,0\le k\le n) = P(X(t_{n+1})=i_{n+1} | X(t_n)=i_n) P(X(tn+1)=in+1∣X(tk)=ik,0≤k≤n)=P(X(tn+1)=in+1∣X(tn)=in)
则称 X X X 为连续参数的马氏链。若对任意的 s , t ≥ 0 s,t\ge0 s,t≥