超像素评价(评估)标准

超像素评价(评估)标准

为了更好的对不同的超像素算法进行评估,因此引入了不同的评价标准,对算法的性能进行评估。

首先,令S={Sj}Kj=1G={Gi}以及图像 Ixn ->I(xn),1≤n≤N。
S表示图像的超像素块的集合,Sj表示第j个超像素块,K表示超像素数量(对于可以控制超像素数量的算法而言,有些算法不能控制生成超像素数量)。
G 表示真实超像素集合,Gi为第 j个超像素,此处的G取自Ground Truth(即参考标准)。
xn表示图像中的第n个像素,N为图像像素总数。

一、Boundary Recall(Rec)—边界召回率

R e c ( G , S ) = T P ( G , S ) T P ( G , S ) + F N ( G , S ) Rec(G,S)=\frac{TP(G,S)}{TP(G,S)+FN(G,S)} Rec(G,S)=TP(G,S)+FN(G,S)TP(G,S)
T P ( G , S ) TP(G,S) TP(G,S)表示: S S S中的边界像素在规定的邻域中存在 G G G中的边界像素
F N ( G , S ) FN(G,S) FN(G,S)表示: S S S中的边界像素在规定的领域中不存在 G G G中的边界像素

因此, R e c ( G , S ) Rec(G,S) Rec(G,S)越大越好

在《Superpixels: An evaluation of the state-of-the-art 》文章中提到: S S S中的边界像素与 G G G中的任意边界像素在 ( 2 r + 1 ) ∗ ( 2 r + 1 ) (2r+1)*(2r+1) (2r+1)(2r+1)的邻域内进行匹配,其中 r r r为图像对角线(四舍五入)的0.0025倍。(例如,对于数据集BSDS500, r = 1 r=1 r=1 )

二、Undersegmentation Error(UE)—欠分割误差

U E L e v i n ( G , S ) = 1 ∣ G ∣ ∑ G i ( ∑ S j ∩ G i ≠ ∅ ∣ S j ∣ ) − ∣ G i ∣ ∣ G i ∣ UE_{Levin}(G,S)=\frac{1}{|G|}\sum_{G_{i}}\frac{(\sum_{S_{j} \cap G_{i}≠\varnothing}|S_{j}|)-|G_{i}|}{|G_{i}|} UELevin(G,S)=G1GiGi(SjGi=Sj)Gi
此公式表示:超像素与真实分割(Ground truth,G)相交之外的像素数量与真实分割像素数量的比值,因此, U E L e v i n ( G , S ) UE_{Levin}(G,S) UELevin(G,S)越小越好。但是该公式没有将 U E L e v i n ( G , S ) UE_{Levin}(G,S) UELevin(G,S)限制在 [ 0 , 1 ] [0,1] [0,1]

Bergh等人提出以下公式:
U E B e r g h ( G , S ) = 1 N ∑ S j ∣ S j − arg max ⁡ G i ∣ S j ∩ G i ∣ ∣ UE_{Bergh}(G,S)=\frac{1}{N}\sum_{S_{j}}|S_{j}-\argmax_{G_{i}}|S_{j}\cap G_{i}|| UEBergh(G,S)=N1SjSjGiargmaxSjGi
其中, arg max ⁡ G i ∣ S j ∩ G i ∣ \argmax_{G_{i}}|S_{j}\cap G_{i}| GiargmaxSjGi表示:取与 S j S_{j} Sj交集最大的 G i G_{i} Gi
N N N为图像像素总数,因此 0 ≤ U E B e r g h ( G , S ) ≤ 1 0≤UE_{Bergh}(G,S)≤1 0UEBergh(G,S)1

Neubert and Protzel提出以下公式:
U E N P ( G , S ) = 1 N ∑ G i ∑ S j ∩ G i ≠ ∅ m i n { ∣ S j ∩ G i ∣ , ∣ S j − G i ∣ } UE_{NP}(G,S)=\frac{1}{N}\sum_{Gi}\sum_{S_{j}\cap G_{i}≠\varnothing}min\{|S_{j}\cap G_{i}|,|S_{j}-G_{i}|\} UENP(G,S)=N1GiSjGi=min{SjGi,SjGi}

三、Explained Variation(EV)—变化解释

E V EV EV量化了超像素的质量,不依赖于 G G G。因为图像边界通常表现出强烈的颜色和结构变化,因此 E V EV EV定义为:
E V ( S ) = ∑ S j ∣ S j ∣ ( μ ( S j ) − μ ( I ) ) 2 ∑ x n ( I ( x n ) − μ ( I ) ) 2 EV(S)=\frac{\sum_{S_{j}}|S_{j}|(\mu (S_{j})-\mu (I))^2}{\sum_{x_{n}}(I(x_{n})-\mu (I))^2} EV(S)=xn(I(xn)μ(I))2SjSj(μ(Sj)μ(I))2
此处 μ ( S j ) \mu (S_{j}) μ(Sj) μ ( I ) \mu (I) μ(I)表示超像素 S j S_{j} Sj和图像 I I I的mean color(色彩均值),因此 E V EV EV越大越好。

四、Compactness(CO)—紧凑性

C O ( G , S ) = 1 N ∑ S j ∣ S j ∣ 4 π A ( S j ) P ( S j ) CO(G,S)=\frac{1}{N}\sum_{S_{j}}|S_{j}|\frac{4πA(S_{j})}{P(S_{j})} CO(G,S)=N1SjSjP(Sj)4πA(Sj)
A ( S j ) A(S_{j}) A(Sj)表示超像素 S j S_{j} Sj的面积
P ( S j ) P(S_{j}) P(Sj)表示与超像素 S j S_{j} Sj周长相同的圆的面积
因此 C O ( G , S ) CO(G,S) CO(G,S)越大越好

五、Achievable Segmentation Accuracy(ASA)—可达分割精度

A S A ( G , S ) = 1 N ∑ S j max ⁡ G i { ∣ S j ∩ G i ∣ } ASA(G,S)=\frac{1}{N}\sum_{S_{j}}\max_{G_{i}}\{|S_{j}\cap G_{i}|\} ASA(G,S)=N1SjGimax{SjGi}
通常,超像素 S j S_{j} Sj与真实分割 G j G_{j} Gj交集越大,说明超像素分割效果越好,因此 A S A ( G , S ) ASA(G,S) ASA(G,S)越大越好。

六、Intra-Cluster Variation(ICV)—簇内变化

I C V ( S ) = 1 ∣ S ∣ ∑ S j ∑ x n ∈ S j ( I ( x n ) − μ ( S j ) ) 2 ∣ S j ∣ ICV(S)=\frac{1}{|S|}\sum_{S_{j}}\frac{\sqrt{\sum_{x_{n}\in S_{j}}(I(x_{n})-\mu (S_{j}))^2}}{|S_{j}|} ICV(S)=S1SjSjxnSj(I(xn)μ(Sj))2
通过计算每个超像素内的平均标准偏差来描述分割的质量。好的分割应该在每个超像素内创建具有较小差异的同质簇。因此 I C V ( S ) ICV(S) ICV(S)越小越好。

七、Mean Distance to Edge(MDE)—边缘平均距离

M D E ( G , S ) = 1 N ∑ x n ∈ B ( G ) d i s t s ( x n ) MDE(G,S)=\frac{1}{N}\sum_{x_{n}\in B(G)}dist_{s}(x_{n}) MDE(G,S)=N1xnB(G)dists(xn)
其中 B ( G ) B(G) B(G) G G G中的边界像素集合, d i s t s dist_{s} dists S S S的距离变换。 M D E MDE MDE越小越好。

  • 3
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值