WirelessGPT:面向无线通信的多任务预训练基础模型

传统的无线AI技术依赖于任务专用模型,面临泛化性不足、标注数据稀缺及多任务协同效率低等挑战。为了解决上述问题,鹏城实验室杨婷婷教授团队研发了首个面向无线通信与感知一体化(ISAC)的基础模型“WirelessGPT”。该模型通过大规模无监督预训练,生成跨时空频域的通用信道表征,显著降低下游任务的调优成本。实验结果表明:该模型在信道估计、动态信道预测及人类活动识别等任务中全面超越现有方法,并在低信噪比(SNR)场景下展现鲁棒性。这一研究展示了无线领域专属大模型WirelessGPT的高效性与可扩展性,为下一代6G网络智能化提供了新范式。(本推文内容由论文作者提供)

WirelessGPT: A Generative Pre-trained Multi-task Learning Framework for Wireless Communication

Tingting Yang, Ping Zhang, Mengfan Zheng, Yuxuan Shi, Liwen Jing, Jianbo Huang, and Nan Li

Pengcheng Laboratory, Shenzhen, China

鹏城实验室,深圳,中国

原文链接

https://arxiv.org/abs/2502.06877

该分享仅用于技术交流,未经许可禁止用于商业用途。

一、背景与动机

随着6G网络向通信与感知一体化(ISAC)方向演进,无线系统需同时支持信道建模、信道预测、环境重建及目标跟踪等多样化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值