GLMBlock中的计算过程拆解

下面我将详细介绍代码中每一个部分,并用LaTeX公式来表示各个步骤的数学运算。

类 GLMBlock

该类继承自 torch.nn.Module,表示一个单一的Transformer层。Transformer层接收尺寸为 [s, b, h] 的输入,并返回相同尺寸的输出。

class GLMBlock(torch.nn.Module):
    """A single transformer layer.

    Transformer layer takes input with size [s, b, h] and returns an
    output of the same size.
    """

初始化方法

初始化方法定义了该层的各个组件,包括输入层的层归一化、自注意力机制、注意力输出的层归一化和MLP层。

def __init__(self, config: ChatGLMConfig, layer_number, device=None):
    super(GLMBlock, self).__init__()
    self.layer_number = layer_number

    self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
    self.fp32_residual_connection = config.fp32_residual_connection

    LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
    self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                         dtype=config.torch_dtype)

    self.self_attention = SelfAttention(config, layer_number, device=device)
    self.hidden_dropout = config.hidden_dropout

    self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                                  dtype=config.torch_dtype)

    self.mlp = MLP(config, device=device)

前向传播方法

前向传播方法定义了数据流经各个组件的方式。

def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):
    # hidden_states: [s, b, h]
1. 输入层归一化

对输入进行层归一化。

layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

layernorm_output = self.input_layernorm(hidden_states)
2. 自注意力机制

将归一化后的输出传递给自注意力层,并获取注意力输出和更新后的缓存。

attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

attention_output, kv_cache = self.self_attention(
    layernorm_output,
    attention_mask,
    rotary_pos_emb,
    kv_cache=kv_cache,
    use_cache=use_cache
)
3. 残差连接

根据配置决定残差连接的位置。

residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

if self.apply_residual_connection_post_layernorm:
    residual = layernorm_output
else:
    residual = hidden_states
4. 添加Dropout并进行第二次层归一化

layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_input

layernorm_output = self.post_attention_layernorm(layernorm_input)
5. MLP层

mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

mlp_output = self.mlp(layernorm_output)
6. 第二次残差连接和输出Dropout

residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

if self.apply_residual_connection_post_layernorm:
    residual = layernorm_output
else:
    residual = layernorm_input

output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
返回输出和缓存
return output, kv_cache

总结

通过这种方式,GLMBlock类实现了一个Transformer层,其中包括层归一化、自注意力机制、残差连接、Dropout和MLP层。各个步骤通过LaTeX公式表示如下:

  1. 输入层归一化:
    layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

  2. 自注意力机制:
    attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

  3. 残差连接:
    residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

  4. 添加Dropout并进行第二次层归一化:
    layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
    layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
    layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

  5. MLP层:
    mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

  6. 第二次残差连接和输出Dropout:
    residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
    output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
    output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

  • 16
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在清扫车拆解过程,可能会用到以下一些常见的工具: 1. 扳手:扳手是一种常见的手工工具,用于拧紧或松开螺栓、螺母等连接件。在清扫车的拆解过程,扳手可以用于拆卸车身上的一些固定件或连接件。 2. 螺丝刀:螺丝刀是一种用来拧紧或松开螺丝的工具。在清扫车拆解过程,螺丝刀可以用来拆卸车身上的一些螺丝,如电池盖、仪表板等。 3. 锤子:锤子是一种用于敲打或击打的工具。在清扫车拆解过程,锤子可以用于敲击一些卡住或紧固的零部件,以便更容易拆卸它们。 4. 螺母扳手:螺母扳手是一种专门用于拧紧或松开螺母的工具。在清扫车拆解过程,有时需要使用螺母扳手来拆卸或安装一些特定的零部件。 5. 剪刀:剪刀是一种用于剪断或修剪的工具。在清扫车拆解过程,剪刀可以用来剪断一些线束或软管,以便更容易拆卸相关的部件。 6. 钳子:钳子是一种用于夹持、固定或拆卸工件的工具。在清扫车拆解过程,钳子可以用于夹持小型零部件,或者拆卸一些需要额外力量的连接件。 7. 拆卸工具套件:拆卸工具套件通常包含各种不同类型和尺寸的工具,如扳手、螺丝刀、钳子等。这些套件能够提供多种工具选择,以适应不同的拆解需求。 需要根据具体的清扫车型和拆解任务来确定使用哪些工具。此外,为了确保工作安全和高效,使用工具时应注意正确的使用方法和操作规范。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值