keras实现mnist数据集手写数字识别

本文详细记录了使用keras在tensorflow环境下实现MNIST手写数字识别的过程,包括tensorflow的安装、keras的安装,以及多层感知机和简单卷积神经网络的模型实现。通过训练,卷积神经网络模型的错误率降至0.93%,相较于多层感知机有了显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经过几天的爬坑,“东搞西搞”终于把深度学习的“HELLO,WORLD”做出来了,以下是自己的实战过程:

关于keras识别手写数字的入门准备:

1.Keras是一个高层神经网络API,Keras由纯Python编写而成并基TensorflowTheano以及CNTK后端。所以在安装keras的前面,要先搭建tensorflow环境和安装https://www.tensorflow.org/install/install_windows(这里是官方的安装过程)

2.Mnist数据集的准备

3.导入数据集测试

4.实现baseline模型:

5.实现简单的卷积神经网络

 

一. Tensorflow环境的安装

这里我们只讲CPU版本,使用 Anaconda 进行安装

a.首先我们要安装 Anaconda

链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig

过程如下:

第一步:点击next

第二步:I Agree

第三步:Just ME

第四步:自己选择一个恰当位置放它就好

第五步:建议只选择第二个

 

第六步:就直接install啦啦啦啦,然后你就可以上手万能库了

 

b.找到Anaconda prompt,然后

 

以管理员的身份打开终端

c.按照以下步骤在 Anaconda 环境中安装 TensorFlow:

  1. 通过调用以下命令创建名为 tensorflow 的 conda 环境:

C:> conda create -n tensorflow pip python=3.5

  1. 通过发出以下命令激活 conda 环境:

C:> activate tensorflow (tensorflow)C:> # Your prompt should change

  1. 发出相应命令以在 conda 环境中安装 TensorFlow。要安装仅支持 CPU 的 TensorFlow 版本,请输入以下命令:

(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow

 

d.测试tensorflow的安装

启动Anaconda prompt(同样是以管理员身份打开)终端。

如果您是通过 Anaconda 进行安装,请激活您的 Anaconda 环境。

终端输入 activate tensorflow即可

然后再输入python

如:

 

在 Python 交互式 shell 中输入以下几行简短的程序代码:

>>> import tensorflow as tf

>>> hello = tf.constant('Hello, TensorFlow!')

>>> sess = tf.Session()

>>> print(sess.run(hello))

如果系统输出以下内容,说明您可以开始编写 TensorFlow 程序了:

Hello, TensorFlow!

 

 

完成以上步骤,你就把tensorflow搭建好了......

 

二.安装keras

a.首先,担心我们anaconda里面各个包未更新到最新,所以我们以管理员的身份打开Anaconda终端,输入 conda update conda,执行完后,再输入:conda update --all

b.然后我们激活我们的tensorflow环境:activate tensorflow

c.然后我们就可以输入:pip install keras

 

三.完成上述步骤,我们就可以来试下加载keras里面的mnist数据集了

# Plot ad hoc mnist i
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值