pytorch框架搭建yolov3模型训练自己的数据

前言

之前一直使用tensorflow来实现yolov3,最近学习pytorch框架,就试着用pytorch来搭建yolov3模型,说实话,比tensorflow要麻烦一点。
首先是环境,项目中有requirements.txt文件,可以直接pip install -r requirements.txt安装:
python3.7
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
pillow
PyYAML>=5.3
scipy>=1.4.1
tensorboard>=2.2
torch>=1.6.0
torchvision>=0.7.0
tqdm>=4.41.0

制作数据集

一般我们都是使用labelImge标注工具,安装也很简单
pip install PyQt5
pip install pyqt5-tools
pip install lxml
pip install labelImg
然后在cmd中输入labelImg回车

源码下载

下载地址:https://github.com/ultralytics/yolov3
有些源码没有cfg文件夹,可以自己找找或者私信我
在这里插入图片描述

数据处理

将训练数据放入data文件夹下,使用常规的文件夹格式,另外新加images和labels文件夹,Annotations中放入xml文件
在这里插入图片描述
分割训练集和测试集

import os
import random
 
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
 
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
 
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
 
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
在ImageSets中会得到相关文件
![在这里插入图片描述](https://img-blog.csdnimg.cn/447373ad4c984709af4ffb50351a30ae.png)
根目录下,新建voc_label.py,得到labels
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
 
sets = ['train', 'test','val']
 
classes = ["输入自己的类别"]
 
 
def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
 
 
def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id))
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
 
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
 
wd = getcwd()
print(wd)
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

labels文件夹下会生成相关文件
在这里插入图片描述

配置文件

在data文件夹下新建2007voc.data:

classes=196 #修改 输入自己的数量 记得删除后面的汉字和#号
train=data/train.txt
valid=data/test.txt
names=data/2007voc.names
backup=backup/
eval=coco

在data文件夹下新建2007voc.names,输入检测的类别

在这里插入图片描述
修改yolov3.cfg配置文件,也可以使用其他网络结构,比如yolov3-tiny.cfg,修改方式一样
在这里插入图片描述
必须修改的部分有两个,总共六处(yolov3-tiny.cfg只有四处),classes改为自己的类别数量,机器classes上面的filters,filter =3*(类别数量 + 5)
在这里插入图片描述

权重下载

官网提供的权重文件需要另外转化,比较麻烦,这里我直接提供yolov3和yolov3-tiny两种权重文件,已经上传,可以直接下载使用:
https://download.csdn.net/download/weixin_41064538/82001090

训练

准备工作做完了,现在可以开始训练,需要修改train.py四个地方
在这里插入图片描述
直接运行train得到训练模型best.pt

在这里插入图片描述

预测

我们将测试数据防止data/samples目录下:
在这里插入图片描述
修改detect.py文件
在这里插入图片描述
直接运行detect.py,就能在output文件夹下看到输出结果
在这里插入图片描述

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 安装pytorchyolov5 首先需要安装pytorchyolov5,可以使用以下命令进行安装: ``` pip install torch torchvision git clone https://github.com/ultralytics/yolov5.git ``` 2. 准备数据集 在训练yolov5模型之前,需要准备训练数据集。数据集应该包括图像和标签文件。标签文件应该是一个.txt文件,每个文件对应一个图像文件,其中每一行都是一个目标框的信息,包括类别、框的位置和大小等。在使用yolov5时,需要将标签文件转换为yolov5所需的格式。可以使用以下命令将标签文件转换为yolov5格式: ``` python3 yolov5/utils/datasets/convert.py --input_path /path/to/label/files --output_path /path/to/yolov5/labels --img_size 640 ``` 其中,--input_path指定标签文件的路径,--output_path指定转换后的标签文件保存的路径,--img_size指定训练图像的大小。 3. 配置训练参数 在训练yolov5模型之前,需要配置训练参数。可以使用yolov5/models/yolov5s.yaml文件作为基础配置文件,根据需要进行修改。可以修改的参数包括网络结构、训练参数、数据增强等。需要根据自己的需求进行配置。 4. 开始训练 使用以下命令开始训练yolov5模型: ``` python3 train.py --img /path/to/images --batch 16 --epochs 50 --data /path/to/data.yaml --cfg yolov5/models/yolov5s.yaml --weights yolov5s.pt ``` 其中,--img指定训练图像的路径,--batch指定训练批次的大小,--epochs指定训练的轮数,--data指定数据集的配置文件,--cfg指定模型的配置文件,--weights指定预训练模型的权重文件。 训练过程中,模型的权重文件会保存在runs/train/exp/weights/目录下。 5. 测试模型 使用以下命令测试训练好的模型: ``` python3 detect.py --source /path/to/images --weights runs/train/exp/weights/best.pt ``` 其中,--source指定测试图像的路径,--weights指定要测试的模型的权重文件。 测试过程中,模型会对每张测试图像进行预测,并将预测结果保存在runs/detect/exp/目录下。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值