深度学习:空洞卷积dilated convolution

空洞卷积(dilated convolution)旨在解决图像分割中的精度损失问题,它避免了池化层导致的精度下降,通过扩大感受野来提高网络的分辨能力。在FCN中,空洞卷积结合skip结构,既能保持高分辨率输出,又确保模型的鲁棒性和准确性。文章介绍了空洞卷积的概念,解释了感受野的计算公式,并展示了不同空洞率下感受野的变化,揭示了其感受野指数增长的特性。
摘要由CSDN通过智能技术生成

https://zhuanlan.zhihu.com/p/43784441

一、空洞卷积概念

引入空洞卷积不得不提的是感受野,感受野就是卷积神经网络的每一层输出的特征图(fe ature map)上的像素点在原图像上映射的区域大小。空洞卷积主要为了解决图像分割中的一些问题而提出的在FCN中通过pooling增大感受野缩小图像尺寸,然后通过upsampling还原图像尺寸,但是这个过程中造成了精度的损失那么为了减小这种损失理所当然想到的是去掉pooling层,然而这样就导致特征图感受野太小,因此空洞卷积应运而生。

感受野: 卷积神经网络的每一层输出的特征图上的像素点在原图像上映射的区域大小

  • FCN 全卷积,图像分割,不含全连接层的全卷积网络(fully conv),可适应任意尺寸大小的输入 
  • 增大数据尺寸 反卷积层,能够输出精细的效果
  • 结合深度层结果的跳级skip结构,同时确保鲁棒性和精确性
  • https://blog.csdn.net/qq_36269513/article/details/80420363

空洞卷积顾名思义就是卷积的一种,如下图所示这个就是空洞卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值