https://zhuanlan.zhihu.com/p/43784441
一、空洞卷积概念
引入空洞卷积不得不提的是感受野,感受野就是卷积神经网络的每一层输出的特征图(fe ature map)上的像素点在原图像上映射的区域大小。空洞卷积主要为了解决图像分割中的一些问题而提出的,在FCN中通过pooling增大感受野缩小图像尺寸,然后通过upsampling还原图像尺寸,但是这个过程中造成了精度的损失,那么为了减小这种损失理所当然想到的是去掉pooling层,然而这样就导致特征图感受野太小,因此空洞卷积应运而生。
感受野: 卷积神经网络的每一层输出的特征图上的像素点在原图像上映射的区域大小
- FCN 全卷积,图像分割,不含全连接层的全卷积网络(fully conv),可适应任意尺寸大小的输入
- 增大数据尺寸 反卷积层,能够输出精细的效果
- 结合深度层结果的跳级skip结构,同时确保鲁棒性和精确性
- https://blog.csdn.net/qq_36269513/article/details/80420363
空洞卷积顾名思义就是卷积的一种,如下图所示这个就是空洞卷积