pytorch 创建onehot向量

one-hot向量

ne-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。
例如
[1,2,4] 有三个数 数的范围是0-4 因此需要一个3x5的张量,可以编码为

[[0 1 0 0 0],
[0 0 1 0 0],
[0 0 0 0 1]]

使用pytorch转换one-hot向量

target.scatter_(dim,index,data)
解释 使用 index中的索引用data中的数据对target沿着dim维度方向进行填充~
看起来很复杂,好好思考一下其实不难理解。
例如,考虑一个张量[1,2,4],需要转换成one-hot编码向量

import torch
index = torch.tensor([1,2,4])
a = index.unsqueeze(1)
print(a)

输出

tensor([[1],
        [2],
        [4]])

需要将index进行升维的原因是我们需要沿这第二个维度方向进行索引,如果不这样做的话,直接按照[1,2,4]进行索引,无法完成该操作,因为这样是沿着第1维度进行索引,索引结果是1,2,4。

import torch

index = torch.tensor([1, 2, 4])
a = index.unsqueeze(1)
result1 = torch.zeros(3,5).scatter_(1,a,1)
print(result1)

输出

tensor([[0., 1., 0., 0., 0.],
        [0., 0., 1., 0., 0.],
        [0., 0., 0., 0., 1.]])
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值