Fourier Series 傅立叶级数 学习笔记Part 1

Numerical Methods and Modeling in Science数值方法建模这门课最近进入到了一个 我完全不会的区域,傅立叶变换。
傅立叶变换的历史就是让人胆颤的历史。学渣如我,闻之色变。
最近的三周课应该都是讲傅立叶变换,写一遍博客也许就记住了----美好的愿望。

引例

Orthonormal标准正交

Orthonormal=Orthogonal+Unit length
在三维空间中,我们有 x ⃗ , y ⃗ , z ⃗ \vec{x},\vec{y},\vec{z} x ,y ,z 满足

x ⃗ ⋅ x ⃗ = y ⃗ ⋅ y ⃗ = z ⃗ ⋅ z ⃗ = 0 \vec{x} \cdot\vec{x}= \vec{y} \cdot\vec{y}= \vec{z} \cdot\vec{z}= 0 x x =y y =z z =0

x ⃗ ⋅ y ⃗ = y ⃗ ⋅ z ⃗ = z ⃗ ⋅ x ⃗ = 1 \vec{x} \cdot\vec{y}= \vec{y} \cdot\vec{z}= \vec{z} \cdot\vec{x}= 1 x y =y z =z x =1
那么任意向量 V ⃗ = a x ⃗ + b y ⃗ + c z ⃗ \vec{V}=a\vec{x}+b\vec{y}+c\vec{z} V =ax +by +cz

在区间 [ − π , π ] [-\pi,\pi] [π,π]中函数g和h的点乘可以表示为

⟨ g , h ⟩ = ∫ − π π g ( x ) h ( x ) d x \left \langle g,h \right \rangle=\int_{-\pi}^{\pi} g(x)h(x)dx g,h=ππg(x)h(x)dx

一些函数
1 2 π \frac{1}{\sqrt{2\pi}} 2π 1
1 π cos ⁡ x \frac{1}{\sqrt{\pi}}\cos x π 1cosx, 1 π cos ⁡ 2 x \frac{1}{\sqrt{\pi}}\cos 2x π 1cos2x , 1 π cos ⁡ 3 x \frac{1}{\sqrt{\pi}}\cos 3x π 1cos3x
1 π sin ⁡ x \frac{1}{\sqrt{\pi}}\sin x π 1sinx , 1 π sin ⁡ 2 x \frac{1}{\sqrt{\pi}}\sin 2x π 1sin2x , 1 π sin ⁡ 3 x \frac{1}{\sqrt{\pi}}\sin 3x π 1sin3x
可以被证明是orthonormal的
⟨ 1 2 π , 1 2 π ⟩ = 1 \left \langle \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{2\pi}} \right \rangle=1 2π 1,2π 1=1
⟨ 1 π cos ⁡ 2 x , 1 π cos ⁡ 2 x ⟩ = 1 \left \langle \frac{1}{\sqrt{\pi}}\cos 2x,\frac{1}{\sqrt{\pi}}\cos 2x \right \rangle=1 π 1cos2x,π 1cos2x=1
⟨ 1 π sin ⁡ 2 x , 1 π sin ⁡ 2 x ⟩ = 1 \left \langle \frac{1}{\sqrt{\pi}}\sin 2x,\frac{1}{\sqrt{\pi}}\sin 2x \right \rangle=1 π 1sin2x,π 1sin2x=1

⟨ 1 2 π , 1 π cos ⁡ 2 x ⟩ = 0 \left \langle \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos 2x \right \rangle=0 2π 1,π 1cos2x=0

那么类似于 V ⃗ \vec{V} V
函数 f ( x ) = c 0 1 2 π + c 1 1 π cos ⁡ x + c 2 1 π cos ⁡ 2 x + . . . + d 1 1 π sin ⁡ x + d 2 1 π sin ⁡ 2 x + . . . f(x)=c_{0}\frac{1}{\sqrt{2\pi}}+c_{1}\frac{1}{\sqrt{\pi}}\cos x+c_{2}\frac{1}{\sqrt{\pi}}\cos 2x+...\\+d_{1}\frac{1}{\sqrt{\pi}}\sin x+d_{2}\frac{1}{\sqrt{\pi}}\sin 2x+... f(x)=c02π 1+c1π 1cosx+c2π 1cos2x+...+d1π 1sinx+d2π 1sin2x+...

我们可以利用上面的orthonormal关系计算得到系数

c 0 = ⟨ f ( x ) , 1 2 π ⟩ = ∫ − π π 1 2 π f ( x ) d x c_{0}=\left \langle f(x),\frac{1}{\sqrt{2\pi}} \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{2\pi}}f(x)dx c0=f(x),2π 1=ππ2π 1f(x)dx

c n = ⟨ f ( x ) , 1 π cos ⁡ n x ⟩ = ∫ − π π 1 π f ( x ) cos ⁡ n x d x c_{n}=\left \langle f(x),\frac{1}{\sqrt{\pi}} \cos nx \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx cn=f(x),π 1cosnx=πππ 1f(x)cosnxdx

d n = ⟨ f ( x ) , 1 π sin ⁡ n x ⟩ = ∫ − π π 1 π f ( x ) sin ⁡ n x d x d_{n}=\left \langle f(x),\frac{1}{\sqrt{\pi}} \sin nx \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \sin nxdx dn=f(x),π 1sinnx=πππ 1f(x)sinnxdx

因此

f ( x ) = ( ∫ − π π 1 π f ( x ) cos ⁡ n x d x ) 1 2 π + ∑ n = 1 ∞ ( ∫ − π π 1 π f ( x ) cos ⁡ n x d x ) 1 π cos ⁡ n x + ∑ n = 1 ∞ ( ∫ − π π 1 π f ( x ) sin ⁡ n x d x ) 1 π sin ⁡ n x f(x)=(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx )\frac{1}{\sqrt{2\pi}}+\sum_{n=1}^{\infty}(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx)\frac{1}{\sqrt{\pi}}\cos nx+\sum_{n=1}^{\infty}(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \sin nxdx)\frac{1}{\sqrt{\pi}}\sin nx f(x)=(πππ 1f(x)cosnxdx)2π 1+n=1(πππ 1f(x)cosnxdx)π 1cosnx+n=1(πππ 1f(x)sinnxdx)π 1sinnx

化简

f ( x ) = ( 1 π ∫ − π π f ( x ) cos ⁡ n x d x ) 1 2 + ∑ n = 1 ∞ ( 1 π ∫ − π π f ( x ) cos ⁡ n x d x ) cos ⁡ n x + ∑ n = 1 ∞ ( 1 π ∫ − π π f ( x ) sin ⁡ n x d x ) sin ⁡ n x f(x)=(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \cos nxdx )\frac{1}{2}+\sum_{n=1}^{\infty}(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \cos nxdx)\cos nx+\sum_{n=1}^{\infty}(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \sin nxdx)\sin nx f(x)=(π1ππf(x)cosnxdx)21+n=1(π1ππf(x)cosnxdx)cosnx+n=1(π1ππf(x)sinnxdx)sinnx

此处有狄利克雷定理,但是我看了好几个版本,看了好久也没太懂,但是仿佛也不重要

在这里插入图片描述

然后就是一个小例子

在这里插入图片描述

下面的演示是随着使用的term的增多我们会看到多个三角函数叠加在一起的效果,趋近于原函数

1个
在这里插入图片描述

2个
在这里插入图片描述

3个
在这里插入图片描述

12个
在这里插入图片描述

个人认为,学习傅立叶变换的思路就是我要用三角函数去模拟原来的函数。为什么要用三角函数呢?我猜是为了后面转换为复变函数。

目前这一部分内容还不是很懂。
留下王一教授给我的朋友圈评论作为激励。

“量子力学告诉我们,位置空间越不apart,Fourier空间越apart。”

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值