Numerical Methods and Modeling in Science数值方法建模这门课最近进入到了一个 我完全不会的区域,傅立叶变换。
傅立叶变换的历史就是让人胆颤的历史。学渣如我,闻之色变。
最近的三周课应该都是讲傅立叶变换,写一遍博客也许就记住了----美好的愿望。
引例
Orthonormal标准正交
Orthonormal=Orthogonal+Unit length
在三维空间中,我们有
x
⃗
,
y
⃗
,
z
⃗
\vec{x},\vec{y},\vec{z}
x,y,z满足
x ⃗ ⋅ x ⃗ = y ⃗ ⋅ y ⃗ = z ⃗ ⋅ z ⃗ = 0 \vec{x} \cdot\vec{x}= \vec{y} \cdot\vec{y}= \vec{z} \cdot\vec{z}= 0 x⋅x=y⋅y=z⋅z=0
x
⃗
⋅
y
⃗
=
y
⃗
⋅
z
⃗
=
z
⃗
⋅
x
⃗
=
1
\vec{x} \cdot\vec{y}= \vec{y} \cdot\vec{z}= \vec{z} \cdot\vec{x}= 1
x⋅y=y⋅z=z⋅x=1
那么任意向量
V
⃗
=
a
x
⃗
+
b
y
⃗
+
c
z
⃗
\vec{V}=a\vec{x}+b\vec{y}+c\vec{z}
V=ax+by+cz
在区间 [ − π , π ] [-\pi,\pi] [−π,π]中函数g和h的点乘可以表示为
⟨ g , h ⟩ = ∫ − π π g ( x ) h ( x ) d x \left \langle g,h \right \rangle=\int_{-\pi}^{\pi} g(x)h(x)dx ⟨g,h⟩=∫−ππg(x)h(x)dx
一些函数
1
2
π
\frac{1}{\sqrt{2\pi}}
2π1
1
π
cos
x
\frac{1}{\sqrt{\pi}}\cos x
π1cosx,
1
π
cos
2
x
\frac{1}{\sqrt{\pi}}\cos 2x
π1cos2x ,
1
π
cos
3
x
\frac{1}{\sqrt{\pi}}\cos 3x
π1cos3x
1
π
sin
x
\frac{1}{\sqrt{\pi}}\sin x
π1sinx ,
1
π
sin
2
x
\frac{1}{\sqrt{\pi}}\sin 2x
π1sin2x ,
1
π
sin
3
x
\frac{1}{\sqrt{\pi}}\sin 3x
π1sin3x
可以被证明是orthonormal的
⟨
1
2
π
,
1
2
π
⟩
=
1
\left \langle \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{2\pi}} \right \rangle=1
⟨2π1,2π1⟩=1
⟨
1
π
cos
2
x
,
1
π
cos
2
x
⟩
=
1
\left \langle \frac{1}{\sqrt{\pi}}\cos 2x,\frac{1}{\sqrt{\pi}}\cos 2x \right \rangle=1
⟨π1cos2x,π1cos2x⟩=1
⟨
1
π
sin
2
x
,
1
π
sin
2
x
⟩
=
1
\left \langle \frac{1}{\sqrt{\pi}}\sin 2x,\frac{1}{\sqrt{\pi}}\sin 2x \right \rangle=1
⟨π1sin2x,π1sin2x⟩=1
⟨
1
2
π
,
1
π
cos
2
x
⟩
=
0
\left \langle \frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos 2x \right \rangle=0
⟨2π1,π1cos2x⟩=0
…
那么类似于
V
⃗
\vec{V}
V
函数
f
(
x
)
=
c
0
1
2
π
+
c
1
1
π
cos
x
+
c
2
1
π
cos
2
x
+
.
.
.
+
d
1
1
π
sin
x
+
d
2
1
π
sin
2
x
+
.
.
.
f(x)=c_{0}\frac{1}{\sqrt{2\pi}}+c_{1}\frac{1}{\sqrt{\pi}}\cos x+c_{2}\frac{1}{\sqrt{\pi}}\cos 2x+...\\+d_{1}\frac{1}{\sqrt{\pi}}\sin x+d_{2}\frac{1}{\sqrt{\pi}}\sin 2x+...
f(x)=c02π1+c1π1cosx+c2π1cos2x+...+d1π1sinx+d2π1sin2x+...
我们可以利用上面的orthonormal关系计算得到系数
c 0 = ⟨ f ( x ) , 1 2 π ⟩ = ∫ − π π 1 2 π f ( x ) d x c_{0}=\left \langle f(x),\frac{1}{\sqrt{2\pi}} \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{2\pi}}f(x)dx c0=⟨f(x),2π1⟩=∫−ππ2π1f(x)dx
c n = ⟨ f ( x ) , 1 π cos n x ⟩ = ∫ − π π 1 π f ( x ) cos n x d x c_{n}=\left \langle f(x),\frac{1}{\sqrt{\pi}} \cos nx \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx cn=⟨f(x),π1cosnx⟩=∫−πππ1f(x)cosnxdx
d n = ⟨ f ( x ) , 1 π sin n x ⟩ = ∫ − π π 1 π f ( x ) sin n x d x d_{n}=\left \langle f(x),\frac{1}{\sqrt{\pi}} \sin nx \right \rangle=\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \sin nxdx dn=⟨f(x),π1sinnx⟩=∫−πππ1f(x)sinnxdx
因此
f ( x ) = ( ∫ − π π 1 π f ( x ) cos n x d x ) 1 2 π + ∑ n = 1 ∞ ( ∫ − π π 1 π f ( x ) cos n x d x ) 1 π cos n x + ∑ n = 1 ∞ ( ∫ − π π 1 π f ( x ) sin n x d x ) 1 π sin n x f(x)=(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx )\frac{1}{\sqrt{2\pi}}+\sum_{n=1}^{\infty}(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \cos nxdx)\frac{1}{\sqrt{\pi}}\cos nx+\sum_{n=1}^{\infty}(\int_{-\pi}^{\pi}\frac{1}{\sqrt{\pi}}f(x) \sin nxdx)\frac{1}{\sqrt{\pi}}\sin nx f(x)=(∫−πππ1f(x)cosnxdx)2π1+∑n=1∞(∫−πππ1f(x)cosnxdx)π1cosnx+∑n=1∞(∫−πππ1f(x)sinnxdx)π1sinnx
化简
f ( x ) = ( 1 π ∫ − π π f ( x ) cos n x d x ) 1 2 + ∑ n = 1 ∞ ( 1 π ∫ − π π f ( x ) cos n x d x ) cos n x + ∑ n = 1 ∞ ( 1 π ∫ − π π f ( x ) sin n x d x ) sin n x f(x)=(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \cos nxdx )\frac{1}{2}+\sum_{n=1}^{\infty}(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \cos nxdx)\cos nx+\sum_{n=1}^{\infty}(\frac{1}{\pi}\int_{-\pi}^{\pi}f(x) \sin nxdx)\sin nx f(x)=(π1∫−ππf(x)cosnxdx)21+∑n=1∞(π1∫−ππf(x)cosnxdx)cosnx+∑n=1∞(π1∫−ππf(x)sinnxdx)sinnx
此处有狄利克雷定理,但是我看了好几个版本,看了好久也没太懂,但是仿佛也不重要
然后就是一个小例子
下面的演示是随着使用的term的增多我们会看到多个三角函数叠加在一起的效果,趋近于原函数
1个
2个
3个
12个
个人认为,学习傅立叶变换的思路就是我要用三角函数去模拟原来的函数。为什么要用三角函数呢?我猜是为了后面转换为复变函数。
目前这一部分内容还不是很懂。
留下王一教授给我的朋友圈评论作为激励。
“量子力学告诉我们,位置空间越不apart,Fourier空间越apart。”