傅里叶级数(Fourier Series)

傅里叶级数(Fourier Series)

基础形式

实周期函数 g ( t ) g(t) g(t),周期为 T T T,展开成傅里叶级数:
g ( t ) = a 0 + ∑ k = 1 + ∞ ( a k ⋅ cos ⁡ ( 2 π k T t ) + b k ⋅ sin ⁡ ( 2 π k T t ) ) a 0 = 1 T ∫ − T 2 T 2 g ( t ) d t a k = 2 T ∫ − T 2 T 2 g ( t ) cos ⁡ ( 2 π k T t ) d t b k = 2 T ∫ − T 2 T 2 g ( t ) sin ⁡ ( 2 π k T t ) d t g(t) = a_0 + \sum_{k=1}^{+\infty} \left( a_k \cdot \cos(2 \pi \frac{k}{T} t) + b_k \cdot \sin(2 \pi \frac{k}{T} t) \right)\\ a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) {\rm d}t \\ a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \cos(2\pi \frac{k}{T} t) {\rm d}t\\ b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \sin(2\pi \frac{k}{T} t) {\rm d}t g(t)=a0+k=1+(akcos(2πTkt)+bksin(2πTkt))a0=T12T2Tg(t)dtak=T22T2Tg(t)cos(2πTkt)dtbk=T22T2Tg(t)sin(2πTkt)dt

演进形式

欧拉公式:
e j 2 π k T t = cos ⁡ ( 2 π k T t ) + j sin ⁡ ( 2 π k T t ) e^{{\rm j}2 \pi \frac{k}{T}t} = \cos(2 \pi \frac{k}{T} t) + {\rm j} \sin(2 \pi \frac{k}{T} t) ej2πTkt=cos(2πTkt)+jsin(2πTkt)

用这个公式替换一下,得到:
g ( t ) = ∑ k = − ∞ + ∞ f k e j 2 π k T t f k = 1 T ∫ − T 2 T 2 g ( t ) e − j 2 π k T t d t g(t) = \sum_{k = -\infty}^{+\infty} f_k e^{{\rm j}2 \pi \frac{k}{T} t} \\ f_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) e^{-{\rm j}2\pi \frac{k}{T}t} {\rm d}t g(t)=k=+fkej2πTktfk=T12T2Tg(t)ej2πTktdt

两者的关系

有如下等式关系:
a 0 = f 0 , k = 0 a k − j b k 2 = f k , k > 0 a k + j b k 2 = f k , k < 0 f k ∗ = f − k a_0 = f_0, k = 0 \\ \frac{a_k - {\rm j} b_k}{2} = f_k, k > 0 \\ \frac{a_k + {\rm j}b_k}{2} = f_k, k < 0 \\ f_k^* = f_{-k} a0=f0,k=02akjbk=fk,k>02ak+jbk=fk,k<0fk=fk

还有一些用到的等式关系:
∫ − T 2 T 2 cos ⁡ ( 2 π k T t ) cos ⁡ ( 2 π k T t ) d t = 2 T \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2\pi \frac{k}{T} t) \cos(2\pi \frac{k}{T} t) {\rm d}t = \frac{2}{T} 2T2Tcos(2πTkt)cos(2πTkt)dt=T2

∫ − T 2 T 2 cos ⁡ ( 2 π k T t ) cos ⁡ ( 2 π l T t ) d t = 0 , k ≠ l \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2\pi \frac{k}{T} t) \cos(2\pi \frac{l}{T} t) {\rm d}t = 0, k \neq l 2T2Tcos(2πTkt)cos(2πTlt)dt=0,k=l

∫ − T 2 T 2 sin ⁡ ( 2 π k T t ) sin ⁡ ( 2 π k T t ) d t = 2 T \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(2\pi \frac{k}{T} t) \sin(2\pi \frac{k}{T} t) {\rm d}t = \frac{2}{T} 2T2Tsin(2πTkt)sin(2πTkt)dt=T2

∫ − T 2 T 2 sin ⁡ ( 2 π k T t ) sin ⁡ ( 2 π l T t ) d t = 0 , k ≠ l \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(2\pi \frac{k}{T} t) \sin(2\pi \frac{l}{T} t) {\rm d}t = 0, k \neq l 2T2Tsin(2πTkt)sin(2πTlt)dt=0,k=l

∫ − T 2 T 2 cos ⁡ ( 2 π k T t ) sin ⁡ ( 2 π l T t ) d t = 0 \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2\pi \frac{k}{T} t) \sin(2\pi \frac{l}{T} t) {\rm d}t = 0 2T2Tcos(2πTkt)sin(2πTlt)dt=0

  • 7
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值