第 1 章 行列式
二阶与三阶行列式
行列式的定义[P1]
什么是行列式、阶、元素、行标、主对角线、副对角线、系数行列式。
二阶与三阶行列式的计算[P3]
对角线法则(只适用于二阶与三阶行列式)。
全排列和对换
相关概念[P4]
什么是全排列、逆序、逆序数、奇排列、偶排列、对换。
定理(对换)[P5]
一个排列中的任意两个元素对换,排列改变奇偶性。
推论:奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数是偶数。
n 阶行列式的定义
定义(n阶行列式)[P6]
一般不用定义来求行列式的值。
行列式的性质
定义(转置行列式)[P7]
行列式的性质[P8]:
- 行列式与它的转置行列式相等。
- 对换行列式的两行(列),行列式变号。
推论:如果行列式有两行完全相同,则此行列式等于 0 . - 行列式的某一行(列)中所有元素都乘同一数 k ,等于用 k 乘此行列式。
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号外面。 - 行列式中如果有两行(列)元素成比例,则此行列式等于零。
- 若行列式的某一行(列)的元素都是两数之和,则可以拆分…[见P10]
- 把行列式的某一行(列)的各元素乘同一数后加到另一行(列)对应元素上去,行列式不变。
行列式按行(列)展开
定义(余子式与代数余子式)[P15]
引理(行列式的展开)[P16]:
一个 n 阶行列式,如果其中第 i 行所有元素除 (i ,j) 元 a i j a_{ij} aij 外都为0,那么这行列式等于 a i j a_{ij} aij 与它的代数余子式的乘积,即
D = a i j A i j D = a_{ij}A_{ij} D=aijAij
定理(按行按列展开)[P17]:
行列式等于它的任意一行(列)的各元素与其对应的代数余子式乘积之和,即
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} D=ai1Ai1+ai2Ai2+...+ainAin
这个定理叫做行列式按行(列)展开法则。
推论[P20]:
行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
D = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n , ( i ≠ j ) D = a_{i1}A_{j1} + a_{i2}A_{j2} + ... + a_{in}A_{jn},(i \not= j) D=ai1Aj1+ai2Aj2+...+ainAjn,(i=