一、行列式

第 1 章 行列式

二阶与三阶行列式

行列式的定义[P1]
什么是行列式、阶、元素、行标、主对角线、副对角线、系数行列式。

二阶与三阶行列式的计算[P3]
对角线法则(只适用于二阶与三阶行列式)。

全排列和对换

相关概念[P4]
什么是全排列、逆序、逆序数、奇排列、偶排列、对换。

定理(对换)[P5]
一个排列中的任意两个元素对换,排列改变奇偶性。
推论:奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数是偶数。

n 阶行列式的定义

定义(n阶行列式)[P6]
一般不用定义来求行列式的值。

行列式的性质

定义(转置行列式)[P7]
行列式的性质[P8]:

  1. 行列式与它的转置行列式相等。
  2. 对换行列式的两行(列),行列式变号。
    推论:如果行列式有两行完全相同,则此行列式等于 0 .
  3. 行列式的某一行(列)中所有元素都乘同一数 k ,等于用 k 乘此行列式。
    推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号外面。
  4. 行列式中如果有两行(列)元素成比例,则此行列式等于零。
  5. 若行列式的某一行(列)的元素都是两数之和,则可以拆分…[见P10]
  6. 把行列式的某一行(列)的各元素乘同一数后加到另一行(列)对应元素上去,行列式不变。
行列式按行(列)展开

定义(余子式与代数余子式)[P15]
引理(行列式的展开)[P16]:
一个 n 阶行列式,如果其中第 i 行所有元素除 (i ,j) 元 a i j a_{ij} aij 外都为0,那么这行列式等于 a i j a_{ij} aij 与它的代数余子式的乘积,即
D = a i j A i j D = a_{ij}A_{ij} D=aijAij

定理(按行按列展开)[P17]:
行列式等于它的任意一行(列)的各元素与其对应的代数余子式乘积之和,即
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} D=ai1Ai1+ai2Ai2+...+ainAin

这个定理叫做行列式按行(列)展开法则

推论[P20]:
行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
D = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n , ( i ≠ j ) D = a_{i1}A_{j1} + a_{i2}A_{j2} + ... + a_{in}A_{jn},(i \not= j) D=ai1Aj1+ai2Aj2+...+ainAjn,(i=j)

特殊的行列式及其计算
上(下)三角行列式[P7]

∣ a 0 0 0 f b 0 0 k l c 0 p q r d ∣ = a b c d \left| \begin{matrix} a & 0 & 0 & 0\\ f & b & 0 & 0 \\ k & l & c & 0\\ p & q & r & d \end{matrix} \right| = abcd afkp0blq00cr000d=abcd
上述是下三角行列式,即主对角线以上全为 0 。同理,主对角线以下全为 0 的叫上三角行列式,它的值也等于对角线元素之积。

而关于副对角线的行列式
∣ 0 0 0 a 0 0 b k 0 c s f d x y z ∣ = ( − 1 ) n ( n − 1 ) / 2 a b c d \left| \begin{matrix} 0 & 0 & 0 & a\\ 0 & 0 & b & k \\ 0 & c & s & f\\ d & x & y & z \end{matrix} \right| = (-1)^{n(n-1)/2}abcd 000d00cx0bsyakfz=(1)n(n1)/2abcd

则可以通过行列式的性质,不断进行列对换来转换为上(下)三角行列式。而其对换的次数是 n(n-1)/2 ,故需要乘上系数 ( − 1 ) n ( n − 1 ) / 2 (-1)^{n(n-1)/2} (1)n(n1)/2

以上结论对于 n 阶行列式仍然成立。

对角行列式[P7]

∣ a 0 0 0 0 b 0 0 0 0 c 0 0 0 0 d ∣ = a b c d \left| \begin{matrix} a & 0 & 0 & 0\\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0\\ 0 & 0 & 0 & d \end{matrix} \right| = abcd a0000b0000c0000d=abcd

即对于主对角线之外的元素全为 0 的行列式,其结果等于主对角线之积。而副对角线行列式同样可以通过对换来转换为主对角线行列式。

对于 n 阶行列式结论仍然成立。

范德蒙行列式[P18]

∣ 1 1 . . . 1 x 1 x 2 . . . x 4 x 1 2 x 2 2 . . . x 4 2 x 1 3 x 2 3 . . . x 4 3 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x 4 n − 1 ∣ = ∏ 1 < = i < j < = n x i − x j \left| \begin{matrix} 1 & 1 & ... & 1\\ x_1 & x_2 & ... & x_4 \\ x_1^2 & x_2^2 & ... & x_4^2\\ x_1^3 & x_2^3 & ... & x_4^3\\ ... & ... & ... & ...\\ x_1^{n-1} & x_2^{n-1} & ... & x_4^{n-1}\\ \end{matrix} \right| = \prod_{1<=i<j<=n}x_i-x_j 1x1x12x13...x1n11x2x22x23...x2n1..................1x4x42x43...x4n1=1<=i<j<=nxixj

拉普拉斯展开式

如果 A 和 B 分别是 m 阶 和 n 阶矩阵,则有

∣ A x O B ∣ = ∣ A O x B ∣ = ∣ A ∣ ∗ ∣ B ∣ \left| \begin{matrix} A & x \\ O & B\\ \end{matrix} \right|= \left| \begin{matrix} A & O \\ x & B\\ \end{matrix} \right| = |A| * |B| AOxB=AxOB=AB

以及
∣ O A B x ∣ = ∣ x A B O ∣ = ( − 1 ) m n ∣ A ∣ ∗ ∣ B ∣ \left| \begin{matrix} O & A \\ B & x\\ \end{matrix} \right|= \left| \begin{matrix} x & A \\ B & O\\ \end{matrix} \right| = (-1)^{mn} |A| * |B| OBAx=xBAO=(1)mnAB

上述是两个特殊的拉普拉斯展开式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷亭1213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值