高中数学伯努利不等式的证明

本文详细介绍了伯努利不等式的证明过程,包括实数幕和一般形式。通过构建函数并利用导数分析证明了当x>-1时,(1+x)^n与1+nx的关系,并推导了一般形式的不等式。证明过程适用于n≤0或n≥1,以及n=0、1或x=0时等号成立的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        最初是从高中数学选修4-5偶然看到伯努利不等式,但是书中整数次幕的形式,后来百度发现

原来伯努利不等式还可以推广到实数幕的形式以及一般形式;

       既然看到就想办法证明岂能这么糊涂的就相信它的正确性,但是用普通方法根本无法证明,实

在头疼,被迫自学导数,之后整理出来方便大家学习和参考。

                                                           伯努利不等式是说:

                                                           当x>-1时有

                                                           ① (1+x)^n ≥ 1+nx        (n≤0 或 n≥1)

                                                           ② (1+x)^n ≤ 1+nx        (0 ≤ n ≤ 1)

                                                           下面是伯努利不等式的一般形式:

                                                           ③(1+x1)(1+x2)......(1+xn) ≥ 1 + x1 + x2 + ...... + xn (xi ≥ 0 或 -1<xi<0 ,n∈N+)

   对不等式①②的证明如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值