赫尔德不等式证明闵可夫斯基不等式

\because (a+b)^{p} =(a+b) ^{p-1}a + (a+b)^{p-1}b

\therefore \sum_{i=1}^{n} (a_{i}+b_{i})^{p}=\sum_{i=1}^{n} (a_{i}+b_{i})^{p-1}a_{i}+\sum_{i=1}^{n} (a_{i}+b_{i})^{p-1}b_{i}

\because \frac{p-1}{p}+\frac{1}{p} = 1(p>1)

由赫尔德不等式可得:

\sum_{i=1}^{n} (a_{i}+b_{i})^{p-1}a_{i}+\sum_{i=1}^{n} (a_{i}+b_{i})^{p-1}b_{i}

\leq [\sum_{i=1}^{n}(a_{i}+b_{i})^{p}]^{\frac{p-1}{p}}[\sum_{i=1}^{n}a_{i}^{p}]^{\frac{1}{p}}+[\sum_{i=1}^{n}(a_{i}+b_{i})^{p}]^{\frac{p-1}{p}}[\sum_{i=1}^{n}b_{i}^{p}]^{\frac{1}{p}}

两边同时乘以[\sum_{i=1}^{n}(a_{i}+b_{i})^{p}]^{-\frac{p-1}{p}}得到闵可夫斯基不等式:

[\sum_{i=1}^{n} (a_{i}+b_{i})^{p}]^{\frac{1}{p}}\leq[\sum_{i=1}^{n}a_{i}^{p}]^{\frac{1}{p}}+[\sum_{i=1}^{n}b_{i}^{p}]^{\frac{1}{p}}(p\geq 1,a_{i}> 0,b_{i}> 0)

等号成立条件:\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=...=\frac{a_{n}}{b_{n}}p=1

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值