【LR线性回归算法+梯度下降算法】机器学习公式推导计算+详细过程 (入门必备)

线性回归算法

寻找一条直线,最大程度的”拟合“样本特征和样本标签的关系。

公式

h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_\theta(x) = \theta_0x_0 + \theta_1x_1 + \theta_2x_2 + ... + \theta_nx_n hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

上式为基本形式。

h θ ( x ) = θ T x h_\theta(x) = \theta^Tx hθ(x)=θTx
上式为向量形式。

损失函数
J ( θ ) = 1 2 m ∑ i = 0 m ( h θ ( x i ) − y i ) 2 J(\theta) = \frac{1}{2m} \sum_{i=0} ^ m (h_{\theta} (x ^ {i}) - y ^ {i}) ^ 2 J(θ)=2m1i=0m(hθ(xi)yi)2
其中:
y ( i ) = θ 0 x 0 i + θ 1 x 1 i + θ 2 x 2 i + . . . + θ n x n i y^{(i)} = \theta_0x^{i}_0 + \theta_1x^{i}_1 + \theta_2x^{i}_2 + ... + \theta_nx^{i}_n y(i)=θ0x0i+θ1x1i+θ2x2i+...+θnxni

对损失函数求导

θ \theta θ求偏导
∂ J ( θ ) ∂ θ = 2 ∑ i = 1 m ( y i − θ x i − θ 0 ) ∗ ( − x i ) \frac{\partial J (\theta)}{\partial \theta} = 2\sum_{i=1} ^ m (y^{i} - \theta x^{i} - \theta_0) * (-x^{i}) θJ(θ)=2i=1m(yiθxiθ0)(xi)
θ 0 \theta_0 θ0求偏导
∂ J ( θ ) ∂ θ 0 = 2 ∑ i = 1 m ( y i − θ x i − θ 0 ) ∗ ( − 1 ) \frac{\partial J (\theta)}{\partial \theta_0} = 2\sum_{i=1} ^ m (y^{i} - \theta x^{i} - \theta_0) * (-1) θ0J(θ)=2i=1m(yiθxiθ0)(1)

梯度下降公式
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J (\theta) θj:=θjαθjJ(θ)

∂ ∂ θ j J ( θ ) = α ∂ ∂ θ j 1 2 m ∑ i = 0 m ( h θ ( x i ) − y i ) 2 \frac{\partial }{\partial \theta_j} J (\theta) = \alpha \frac{\partial }{\partial \theta_j}\frac{1}{2m} \sum_{i=0} ^ m {(h_\theta(x^{i}) - y^{i})}^2 θjJ(θ)=αθj2m1i=0m(hθ(xi)yi)2

= α 1 m ∑ i = 0 m ( h θ ( x i ) − y i ) ∗ x i = \alpha \frac{1}{m} \sum_{i=0} ^ m {(h_\theta(x^{i}) - y^{i})} * x^{i} =αm1i=0m(hθ(xi)yi)xi

  • 式中 α \alpha α表示学习率

梯度下降公式推导
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J (\theta) θj:=θjαθjJ(θ)

∂ ∂ θ j J ( θ ) = ∂ ∂ θ j 1 2 m ∑ i = 0 m ( h θ ( x i ) − y i ) 2 \frac{\partial }{\partial \theta_j} J (\theta) = \frac{\partial }{\partial \theta_j}\frac{1}{2m} \sum_{i=0} ^ m {(h_\theta(x^{i}) - y^{i})}^2 θjJ(θ)=θj2m1i=0m(hθ(xi)yi)2

= 1 2 m ∑ i = 0 m ( ∂ ∂ θ j ( h θ ( x i ) − y i ) 2 ) = \frac{1}{2m} \sum_{i=0} ^ m (\frac{\partial }{\partial \theta_j} (h_\theta(x^{i}) - y^{i})^2) =2m1i=0m(θj(hθ(xi)yi)2)


  • 连式法则:

z = f ( y ) z = f(y) z=f(y)

y = g ( x ) y = g(x) y=g(x)

z = f ( g ( x ) ) z = f(g(x)) z=f(g(x))

  • 对 $ z $求导
    ( z ) ′ = ( f ( g ( x ) ) ) ′ ∗ ( g ( x ) ) ′ (z)' = (f(g(x)))' * (g(x))' (z)=(f(g(x)))(g(x))

= 1 2 m ∑ i = 0 m ( ∂ ∂ θ j ( h θ ( x i ) − y i ) 2 ) ∗ ( ∂ ∂ θ j ( h θ ( x i ) − y i ) ) = \frac{1}{2m} \sum_{i=0} ^ m (\frac{\partial }{\partial \theta_j} (h_\theta(x^{i}) - y^{i})^2)* (\frac{\partial }{\partial \theta_j}(h_\theta(x^{i}) - y^{i})) =2m1i=0m(θj(hθ(xi)yi)2)(θj(hθ(xi)yi))

  • 求幂导

= 1 2 m ∑ i = 0 m 2 ∗ ( ( h θ ( x i ) − y i ) ) ∗ ( ∂ ∂ θ i ( ∑ i = 0 n θ i x i − y i ) ) = \frac{1}{2m} \sum_{i=0} ^ m 2 * ((h_\theta(x^{i}) - y^{i})) * (\frac{\partial }{\partial \theta_i}(\sum_{i=0} ^ n \theta_i x_i - y^{i})) =2m1i=0m2((hθ(xi)yi))(θi(i=0nθixiyi))

= 1 m ∑ i = 0 m ( ( h θ ( x i ) − y i ) ) ∗ ( ∑ i = 0 n ( ∂ ∂ θ i θ i x i − ∂ ∂ θ i y i ) = \frac{1}{m} \sum_{i=0} ^ m ((h_\theta(x^{i}) - y^{i})) * (\sum_{i=0} ^ n (\frac{\partial }{\partial \theta_i} \theta_i x^{i} - \frac{\partial }{\partial \theta_i}y_i) =m1i=0m((hθ(xi)yi))(i=0n(θiθixiθiyi)

= 1 m ∑ i = 0 m ( h θ ( x i ) − y i ) ∗ x i = \frac{1}{m} \sum_{i=0} ^ m {(h_\theta(x^{i}) - y^{i})} * x^{i} =m1i=0m(hθ(xi)yi)xi

算法原理

  • 将需要预测的数据 ”喂给“模型,计算得到预测值 y i y^{i} yi
  • 预测值和真实值相减,使得两者之间的误差尽可能的小。
  • 定义损失函数。对损失函数求偏导,求极值 。
  • 梯度下降,迭代去更新参数 θ j \theta_j θj
  • 直到 θ \theta θ值达到我们预设的阈值,那么迭代停止 。
欢迎大家交流学习,任何问题都可以留言
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值