Deep Learning(深度学习)基本概念

Deep Learning(深度学习)基本概念

1、网络基本结构

在这里插入图片描述
对于这个网络,输入的是向量,输出的也是向量
在这里插入图片描述
在这里插入图片描述
下一层的一个神经元的输入是上一层所有神经元的输出计算得到,即全部连接在与上一层所有神经元全部连接。输入数据为输入层,中间的为隐层,最后为输入层。
当有很多隐层时,就可视作由神经网络变为深度神经网络。

在神经元节点计算时,为了便于计算,将其写成矩阵与相乘的形式:
在这里插入图片描述
即先计算权重矩阵*输入矩阵+偏置矩阵,然后将得到的值带入激活函数(如sigmoid)得到该神经元节点的输出值。
在这里插入图片描述
最后抽象为一个函数:
在这里插入图片描述
输入x与输出y都是向量,以图片举例如下:
在这里插入图片描述
在这里插入图片描述

2、反向链式求导

先看一个最基本的只有一层一个神经元的计算:
在这里插入图片描述
再引申到两层
在这里插入图片描述
再通过反向传播求这两额偏导数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值