Deep Learning(深度学习)基本概念
1、网络基本结构
对于这个网络,输入的是向量,输出的也是向量
下一层的一个神经元的输入是上一层所有神经元的输出计算得到,即全部连接在与上一层所有神经元全部连接。输入数据为输入层,中间的为隐层,最后为输入层。
当有很多隐层时,就可视作由神经网络变为深度神经网络。
在神经元节点计算时,为了便于计算,将其写成矩阵与相乘的形式:
即先计算权重矩阵*输入矩阵+偏置矩阵,然后将得到的值带入激活函数(如sigmoid)得到该神经元节点的输出值。
最后抽象为一个函数:
输入x与输出y都是向量,以图片举例如下:
2、反向链式求导
先看一个最基本的只有一层一个神经元的计算:
再引申到两层
再通过反向传播求这两额偏导数