U231683 younger 永存

原题链接
我不会三角函数,公式很长,别喷我

结论推导

u231683.1
按照题意,我们可以得到上面的图形(乱画的,不标准),我们发现,这一条线段将三角形分为的两个部分,至少有一个是三角形。如果我们可以将 D E DE DE 的长度表示为一个函数,会好求得多。我们尝试用只含有 C D CD CD 的式子表示出 E D ED ED
由于我不会三角函数,只会勾股定理和海伦公式,便有了下面的推导:
U231683.2
先做出 △ C D E \bigtriangleup CDE CDE C D CD CD 边上的高( E F EF EF),由于 S △ C D E = 1 2 S △ A B C S_{\bigtriangleup CDE}=\frac12S_{\bigtriangleup ABC} SCDE=21SABC S △ C D E = 1 2 C D × E F S_{\bigtriangleup CDE}=\frac12CD\times EF SCDE=21CD×EF,我们可以得到:
E F = 2 × 1 2 S △ A B C C D = 2 × 1 2 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D = A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D EF=\frac{2\times\frac12S_{\bigtriangleup ABC}}{CD}=\frac{2\times\frac12\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD}=\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD} EF=CD2×21SABC=CD2×212AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) =CD2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC)
现在,若使用勾股定理,我们距离 D E DE DE 仅有一 F D FD FD 之遥,那么怎么求出 F D FD FD
转化一下: F D = C D − C F FD=CD-CF FD=CDCF,而 C F CF CF 是很好求的,众所周知,这种 9 0 ∘ , 6 0 ∘ , 3 0 ∘ 90^\circ,60^\circ,30^\circ 90,60,30 的三角形两直角边的比例是 3 : 1 \sqrt3:1 3 :1
∴ C F = 1 3 E F = 1 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D ∴ F D = C D − 1 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D \therefore CF=\frac{1}{\sqrt{3}}EF=\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD}\\ \therefore FD=CD-\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD} CF=3 1EF=3 1CD2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) FD=CD3 1CD2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC)
勾股一下:
E D = ( A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D ) 2 + ( C D − 1 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) C D ) 2 ED=\sqrt{\left(\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD}\right)^2+\left(CD-\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{CD}\right)^2} ED= CD2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) 2+ CD3 1CD2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) 2
我们已经求出了线段 E D ED ED 长度的函数,为了求出 E D ED ED 长度的最小值,我们需要求出这个函数的最低点,也就是该函数导数为0的点中的某一个,假设该函数为 f ( x ) f(x) f(x),我们来对它求导:
f ′ ( x ) = 1 2 ⋅ ( ( A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) x ) 2 + ( x − 1 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) x ) 2 ) − 1 2 ⋅ ( 2 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) x ⋅ ( − A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) ) x − 2 + 2 ( x − 1 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) x ) ⋅ ( 1 + A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) 3 x − 2 ) ) f'(x)=\frac{1}{2}\cdot\left(\left(\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{x}\right)^{2}+\left(x-\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{x}\right)^{2}\right)^{-\frac{1}{2}}\cdot\left(2\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{x}\cdot\left(-\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}\right)x^{-2}+2\left(x-\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{x}\right)\cdot\left(1+\frac{\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}}{\sqrt{3}}x^{-2}\right)\right) f(x)=21 x2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) 2+ x3 1x2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) 2 21 2x2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) (2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) )x2+2 x3 1x2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) 1+3 2AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) x2
化简得(化简过程):
f ′ ( x ) = 3 x 4 − 4 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) 3 x 3 ( 4 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) 3 x 2 + x 2 − 2 3 A B + A C + B C 2 ( A B + A C + B C 2 − A B ) ( A B + A C + B C 2 − B C ) ( A B + A C + B C 2 − A C ) ) f'\left(x\right)=\frac{\frac{3x^{4}-4\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}{3x^{3}}}{\sqrt{\left(\frac{4\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}{3x^{2}}+x^{2}-\frac{2}{\sqrt{3}}\sqrt{\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-AB\right)\left(\frac{AB+AC+BC}{2}-BC\right)\left(\frac{AB+AC+BC}{2}-AC\right)}\right)}} f(x)=(3x242AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC)+x23 22AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC) ) 3x33x442AB+AC+BC(2AB+AC+BCAB)(2AB+AC+BCBC)(2AB+AC+BCAC)
由于该三角形是等边三角形,我们可以使用 n n n 来代表 A B , A C , B C AB,AC,BC AB,AC,BC,并进行进一步化简(化简过程):
f ′ ( x ) = x 4 − n 4 4 x 2 n 4 4 + x 4 − n 2 x 2 2 f'\left(x\right)=\frac{x^{4}-\frac{n^{4}}{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}} f(x)=x24n4+x42n2x2 x44n4
由于需要求出导数为0的位置的x坐标,我们可以列出方程:
x 4 − n 4 4 x 2 n 4 4 + x 4 − n 2 x 2 2 = 0 x 4 x 2 n 4 4 + x 4 − n 2 x 2 2 − n 4 4 x 2 n 4 4 + x 4 − n 2 x 2 2 = 0 x 4 x 2 n 4 4 + x 4 − n 2 x 2 2 = n 4 4 x 2 n 4 4 + x 4 − n 2 x 2 2 x 4 = n 4 4 x = ± n 4 4 4 x = ± n 2 \begin{aligned} \frac{x^{4}-\frac{n^{4}}{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}}&=0 \\\frac{x^{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}}-\frac{\frac{n^{4}}{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}}&=0 \\\frac{x^{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}}&=\frac{\frac{n^{4}}{4}}{x^{2}\sqrt{\frac{n^{4}}{4}+x^{4}-\frac{n^{2}x^{2}}{2}}} \\x^{4}&=\frac{n^{4}}{4} \\x&=\pm\sqrt[4]{\frac{n^{4}}{4}} \\x&=\pm\frac{n}{\sqrt2} \end{aligned} x24n4+x42n2x2 x44n4x24n4+x42n2x2 x4x24n4+x42n2x2 4n4x24n4+x42n2x2 x4x4xx=0=0=x24n4+x42n2x2 4n4=4n4=±44n4 =±2 n
由于长度只能取正数(在这里, x x x 所表示的是 C D CD CD 的长度),所以 x = n 2 x=\frac{n}{\sqrt2} x=2 n
x ( = C D ) = n 2 x(=CD)=\frac{n}{\sqrt2} x(=CD)=2 n 带回原式计算:
E D m i n = ( 3 n 2 ( 3 n 2 − n ) ( 3 n 2 − n ) ( 3 n 2 − n ) n 2 ) 2 + ( n 2 − 1 3 3 n 2 ( 3 n 2 − n ) ( 3 n 2 − n ) ( 3 n 2 − n ) n 2 ) 2 ED_{min}=\sqrt{\left(\frac{\sqrt{\frac{3n}{2}\left(\frac{3n}{2}-n\right)\left(\frac{3n}{2}-n\right)\left(\frac{3n}{2}-n\right)}}{\frac{n}{\sqrt2}}\right)^2+\left(\frac{n}{\sqrt2}-\frac{1}{\sqrt{3}}\frac{\sqrt{\frac{3n}{2}\left(\frac{3n}{2}-n\right)\left(\frac{3n}{2}-n\right)\left(\frac{3n}{2}-n\right)}}{\frac{n}{\sqrt2}}\right)^2} EDmin= 2 n23n(23nn)(23nn)(23nn) 2+ 2 n3 12 n23n(23nn)(23nn)(23nn) 2
得到(计算过程):
E D m i n = n 2 \Large{ED_{min}=\frac{n}{\sqrt2}} EDmin=2 n

代码实现

#include<bits/stdc++.h>
using namespace std;
int main()
{
    double n;
    cin>>n;
    printf("%.5f",n/sqrt(2));
    return 0;
}

另一种方法

其实,上面的过程,也说明了当 E D ED ED 最小时, E D = C D ED=CD ED=CD,所以:
(以大三角形边长为 2 2 2 为例)U231683.3
注:请不要在意那个圆,只是为了截取 2 \sqrt2 2 的长度才画的。
如图,我们得到了一个等腰三角形,由于等腰三角形的底角相等,我们可以得到:
U231683.4
根据三角形的内角和,我们又可以得到:
U231683.5
可以证明,当 E D ED ED 最短时,所截出的小三角形一定是一个等边三角形,于是,可以得出以下方程(设 D E = x DE=x DE=x A B = n AB=n AB=n):
3 x 2 ( 3 x 2 − x ) ( 3 x 2 − x ) ( 3 x 2 − x ) = 1 2 3 n 2 ( 3 n 2 − n ) ( 3 n 2 − n ) ( 3 n 2 − n ) 3 x 2 ( x 2 ) 3 = 1 2 3 n 2 ( n 2 ) 3 3 x 4 16 = 1 2 3 n 4 16 3 x 2 4 = 1 2 3 n 2 4 3 x 2 = 3 n 2 2 x 2 = n 2 2 x = ± n 2 2 x = ± n 2 \begin{aligned} \sqrt{\frac{3x}{2}(\frac{3x}{2}-x)(\frac{3x}{2}-x)(\frac{3x}{2}-x)}&=\frac{1}{2}\sqrt{\frac{3n}{2}(\frac{3n}{2}-n)(\frac{3n}{2}-n)(\frac{3n}{2}-n)} \\\sqrt{\frac{3x}{2}(\frac{x}{2})^{3}}&=\frac{1}{2}\sqrt{\frac{3n}{2}(\frac{n}{2})^{3}} \\\sqrt{\frac{3x^{4}}{16}}&=\frac{1}{2}\sqrt{\frac{3n^{4}}{16}} \\\frac{\sqrt{3}x^{2}}{4}&=\frac{1}{2}\frac{\sqrt{3}n^{2}}{4} \\\sqrt{3}x^{2}&=\frac{\sqrt{3}n^{2}}{2} \\x^{2}&=\frac{n^{2}}{2} \\x&=\pm\sqrt{\frac{n^{2}}{2}} \\x&=\pm\frac{n}{\sqrt2} \end{aligned} 23x(23xx)(23xx)(23xx) 23x(2x)3 163x4 43 x23 x2x2xx=2123n(23nn)(23nn)(23nn) =2123n(2n)3 =21163n4 =2143 n2=23 n2=2n2=±2n2 =±2 n
由于长度只能取正数(在这里, x x x 所表示的是 D E DE DE 的长度),所以 x = n 2 x=\frac{n}{\sqrt2} x=2 n
∴ E D m i n = n 2 \Large{\therefore ED_{min}=\frac{n}{\sqrt2}} EDmin=2 n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值