动态规划专练( 416.分割等和子集)

416.分割等和子集

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

这题是一个01背包问题,这是我万万没有想到的。

说说我对01背包的理解,如果我能把一道题的要求转换为,求数组中的某个集合的值最趋近于某个值,那就可以使用01背包来解。

就这题来说,要求我们将数组分割成两个元素和相等的子集,其实就是在问,数组中是否存在一个集合,他的元素和等于数组值的一半。

这个时候可以怎么转换呢,使用01背包的思想,这个数组中每个值都只能使用一次,每个元素的重量就是这个值,每个元素的价值也就是这个值,背包的容量就是数组元素和的一半。

代码实现如下:

package com.offer;

import com.offer.leetcode.datastruct.DPUtils;

/**
 * @author bwzfy
 * @create 2024/4/11
 **/
public class _416分割等和子集 {

    public static void main(String[] args) {
        System.out.println(canPartition(new int[]{1, 5, 11, 5}));
    }

    public static boolean canPartition(int[] nums) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }
        if (sum % 2 == 1) {
            return false;
        }
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for (int i = 1; i <= target; i++) {
            if (nums[0] <= i) {
                dp[i] = nums[0];
            }
        }
        for (int i = 1; i < nums.length; i++) {
            for (int j = target; j >= 1; j--) {
                if (nums[i] <= j) {
                    dp[j] = Math.max(dp[j], nums[i] + dp[j - nums[i]]);
                }
            }
        }
        return dp[target] == target;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值