计蒜客-T1196-因子问题--两个坑点

蒜头君给了两个正整数 NN、MM,求一个最小的正整数 aa,使得 aa 和 (M-a)(M−a) 都是 NN 的因子(包括负因子)。

输入格式
包括两个整数 NN、MM。NN 不超过 1,000,0001,000,000。

输出格式
输出一个整数 aa,表示结果。如果某个案例中满足条件的正整数不存在,则在对应行输出 -1−1。

输出时每行末尾的多余空格,不影响答案正确性

样例输入复制
35 10
样例输出复制
5

题目还是很简单的,我们所要做的就是枚举从1->n,然后判断是否能被整除即可,可是这里有两个坑点,第一个坑点就是是否需要枚举到n,也就是 i 是否需要等于n,这里是需要的,假设一张特殊情况,也就是1*1=1;那么如果i不能枚举到1的话,那么循环就进不去,导致无法计算结果,第二个坑就是需要判断m-i是否等于0,如果m-i等于零,也进入不了循环,AC代码如下:

#include<iostream>
#include<map>
#include<cmath>
using namespace std;
typedef long long ll;

/*
@author:HaiRU,WU
@from:AHUT
*/

int main(){
	ll n,m;
	cin >> n>> m;
	ll i; 
	bool flag=false;
	for(i=1;i<=n;i++){
		ll num=(m-i)>0?(m-i):(i-m);
		if(num!=0 && n%i==0 && n%num==0 ){
			cout<<i<<endl;
			flag=true;
			break;
		}
	}
	
	if(flag==false){
		cout<<-1<<endl;
	}
	return 0;
}

附上AC图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴同学GOGOGO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值