【数据结构】几种排序的代码以及时间复杂度分析和优化

1、直接插入排序

//时间复杂度是O(n^2)
public class InsertDirectly {
    public static void main(String[] args) {
        int[] arrays=new int[]{49,38,65,97,76,13,27,49};
        int i,j,temp;
        for(i=1;i<arrays.length;i++){
            temp=arrays[i];
            j=i-1;
            while (j>=0 && temp<arrays[j]){
                arrays[j+1]=arrays[j];
                --j;
            }
            arrays[j+1]=temp;
        }
        for (int a=0;a<arrays.length;a++){
            System.out.println(arrays[a]);
        }

    }
}

考虑最坏情况,数组是逆序的,最内层循环执行次数是n,n-1,n-2…加起来以后是n(n-1)/2,所以时间复杂度是O(n^2)

2、折半插入

//时间复杂度最坏是O(n^2),最好是O(nlog2^n),平均是O(n^2)
public class HalfInsert {
    public static void main(String[] args) {
        int[] arrays=new int[]{13,38,49,65,76,97,27};
        for(int i=0;i<arrays.length;i++){
            int low=0;
            int high=i-1;
            int temp=arrays[i];
            while(low<=high){
                int middle=(high+low)/2;
                if(arrays[middle]>temp){
                    high=middle-1;
                }else{
                    low=middle+1;
                }
            }
            for(int j=i-1;j>high;j--){
                arrays[j+1]=arrays[j];
            }
            arrays[high+1]=temp;
        }

        for(int a=0;a<arrays.length;a++){
            System.out.println(arrays[a]);
        }
    }
}

3、希尔排序

//最佳情况:T(n) = O(nlogn)。最坏情况:T(n) = O(n)。平均情况:T(n) = O(nlogn)
public class ShellSort {
    public static void main(String[] args) {
        int[] array=new int[]{49,38,65,97,76,13,27,49,55,4};
        int gap=array.length/2;

        int i,j,temp;
        while(gap>=1){
            for(i=gap;i<array.length;i++){
                temp=array[i];
                j=i-gap;
                while(j>=0 && array[j]>temp){
                   array[j+gap]=array[j];
                   j=j-gap;
                }
                array[j+gap]=temp;
            }
            gap=gap/2;
        }
        for(int index=0;index<array.length;index++){
            System.out.println(array[index]);
        }
    }
}

4、冒泡排序

//平均时间复杂度是O(n^2)
public class BubbleSort {
    public static void main(String[] args) {
        int[] array=new int[]{49,38,65,97,76,13,27,49,55,4};
        int i,j,temp;
        for (i=0;i<array.length-1;i++){
            for(j=0;j<array.length-1-i;j++){
                if(array[j]>array[j+1]){
                    temp=array[j];
                    array[j]=array[j+1];
                    array[j+1]=temp;
                }
            }
        }
        for (int a:array) {
            System.out.println(a);
        }

    }
}

5、快速排序(优化了一部分的)

package sort;
//快速排序的缺点及其优化

/**
 * 三种选择基准的方法:
 *
 * 1、取序列的第一个或者最后一个元素作为基准
 *
 * 缺点:若数组有序,此时的分割效果非常差,每次划分只能使待排序序列减一,快速排序沦为冒泡排序,时间复杂度O(N2)数据量特别大时,会出现栈溢出的情况
 *
 * 2、随机选取基准:取待排序列中任意一个元素作为基准,将选择好的基准元素与low位置元素互换位置,此时就可以和普通的快排一样调用划分函数。
 *
 * 缺点:数字全相等的情况下,时间复杂度依然是O(n2)。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。
 *
 * 3、三数取中
 *
 * 一般是取low、middle、high三个位置上元素的中值作为基准
 *
 * 缺点:同样处理不了重复数组
 * 4.当待排序序列长度分割到一定大小后,使用插入排序。
 * 原因:对于很小和部分有序的数组,快排不如插排好。当待排序序列的长度分割到一定大小后,继续分割的效率比插入排序要差,此时可以使用插排而不是快排
 *
 * 5.在一次分割结束后,可以把与Key相等的元素聚在一起,继续下次分割时,不用再对与key相等元素分割(还未优化)(处理重复效率极高)
 */
public class FastSortUp {
    //三数取中优化
    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    private  static void printArr(int[] arr) {
        for (int anArr : arr) {
            System.out.print(anArr + " ");
        }
    }

    private static int partition(int[] arr, int left, int right) {
        // 采用三数中值分割法,找出一次排序后mid的值作为分割点。
        int mid = left + (right - left) / 2;
        // 保证左端较小
        if (arr[left] > arr[right])
            swap(arr, left, right);
        // 保证中间较小
        if (arr[mid] > arr[right])
            swap(arr, mid, right);
        // 保证中间最小,左右最大
        if (arr[mid] > arr[left])
            swap(arr, left, mid);
        int pivot = arr[left];
        while (right > left) {
            // 先判断基准数和后面的数依次比较
            while (pivot <= arr[right] && left < right) {
                --right;
            }
            // 当基准数大于了 arr[right],则填坑
            if (left < right) {
                arr[left] = arr[right];
                ++left;
            }
            // 现在是 arr[right] 需要填坑了
            while (pivot >= arr[left] && left < right) {
                ++left;
            }
            if (left < right) {
                arr[right] = arr[left];
                --right;
            }
        }
        arr[left] = pivot;


        return left;
    }

    private static void quickSort(int[] arr, int left, int right) {
        if (arr == null || left >= right || arr.length <= 1)
            return;
        if(right-left+1<10){
            insertSort(arr,left,right);
        }
        int mid = partition(arr, left, right);
        quickSort(arr, left, mid);
        quickSort(arr, mid + 1, right);
    }

    public static void insertSort(int[] arr,int low,int height)
    {
        for(int i=low+1;i<=height;i++)
        {
            int tmp=arr[i];
            int j;
            for(j=i;j>low&&arr[j-1]>tmp;j--)
            {
                arr[j]=arr[j-1];
            }
            arr[j]=tmp;
        }
    }

    public static void main(String[] args) {
        int[] arr = {1,5,4,8,3,6,7,2,12,9,34,27,54,43,18,20,-1,-5,13,17,-22,7,2,11,66,78,103};
        quickSort(arr, 0, arr.length - 1);
        printArr(arr);
    }

}

6、简单选择排序

public class SimpleChooseSort {
    public static void main(String[] args) {
        int[] array=new int[]{49,68,65,97,76,13,27,49};
        int i=0,j=0,index=0,temp;
        while(i<array.length){
            index=i;
            for(j=i+1;j<array.length;j++){
                if(array[index]>array[j]){
                    index=j;
                }
            }
            temp=array[i];
            array[i]=array[index];
            array[index]=temp;
            i++;
        }
        for(int a=0;a<array.length;a++){
            System.out.println(array[a]);
        }
    }

}

7、堆排序

package sort;
//时间复杂度为O(nlogn)
public class HeapSort {
    public static void main(String[] args) {
        int[] arr = {16, 7, 3, 20, 17, 8};
        heapSort(arr);
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }

        /**
         * 创建堆,
         * @param arr 待排序列
         */
        private static void heapSort(int[] arr) {
            //创建堆
            for (int i = (arr.length - 1) / 2; i >= 0; i--) {
                //从第一个非叶子结点从下至上,从右至左调整结构
                adjustHeap(arr, i, arr.length);
            }

            //调整堆结构+交换堆顶元素与末尾元素
            for (int i = arr.length - 1; i > 0; i--) {
                //将堆顶元素与末尾元素进行交换
                int temp = arr[i];
                arr[i] = arr[0];
                arr[0] = temp;

                //重新对堆进行调整
                adjustHeap(arr, 0, i);
            }
        }

        /**
         * 调整堆
         * @param arr 待排序列
         * @param parent 父节点
         * @param length 待排序列尾元素索引
         */
        private static void adjustHeap(int[] arr, int parent, int length) {
            //将temp作为父节点
            int temp = arr[parent];
            //左孩子
            int lChild = 2 * parent + 1;

            while (lChild < length) {
                //右孩子
                int rChild = lChild + 1;
                // 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点
                if (rChild < length && arr[lChild] < arr[rChild]) {
                    lChild++;
                }

                // 如果父结点的值已经大于孩子结点的值,则直接结束
                if (temp >= arr[lChild]) {
                    break;
                }

                // 把孩子结点的值赋给父结点
                arr[parent] = arr[lChild];

                //选取孩子结点的左孩子结点,继续向下筛选
                parent = lChild;
                lChild = 2 * lChild + 1;
            }
            arr[parent] = temp;
        }

}

8、二路归并排序

package sort;

public class TogetherSort {

    /**
     * 归并排序
     * @param arr
     * @param left
     * @param right
     */
    public static void mergeSort(int[] arr, int left, int right) {
        if(null == arr) {
            return;
        }
        if(left < right) {
            //找中间位置进行划分
            int mid = (left+right)/2;
            //对左子序列进行递归归并排序
            mergeSort(arr, left, mid);
            //对右子序列进行递归归并排序
            mergeSort(arr, mid+1, right);
            //“合”。 进行归并
            merge(arr, left, mid, right);
        }
    }

    /**
     * 进行归并
     * @param arr
     * @param left
     * @param mid
     * @param right
     */
    private static void merge(int[] arr, int left, int mid, int right) {
        int[] tempArr = new int[arr.length];
        int leftStart = left;
        int rightStart = mid+1;
        int tempIndex = left;

        while(leftStart <= mid && rightStart <= right) {
            if(arr[leftStart] < arr[rightStart]) {
                tempArr[tempIndex++] = arr[leftStart++];
            } else {
                tempArr[tempIndex++] = arr[rightStart++];
            }
        }

        while(leftStart <= mid) {
            tempArr[tempIndex++] = arr[leftStart++];
        }

        while(rightStart <= right) {
            tempArr[tempIndex++] = arr[rightStart++];
        }

        while(left <= right) {
            arr[left] = tempArr[left++];
        }
    }

    private static void showArr(int[] arr) {
        for(int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
    }

    public static void main(String[] args) {
        int[] arr = {4, 2, 6, 1, 3, 8, 5, 9};
        /*
         * 归并排序
         * 对上下限值分别为0和arr.length-1的记录序列arr进行归并排序
         */
        mergeSort(arr, 0, arr.length-1);
        showArr(arr);
    }


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值