1、直接插入排序
//时间复杂度是O(n^2)
public class InsertDirectly {
public static void main(String[] args) {
int[] arrays=new int[]{49,38,65,97,76,13,27,49};
int i,j,temp;
for(i=1;i<arrays.length;i++){
temp=arrays[i];
j=i-1;
while (j>=0 && temp<arrays[j]){
arrays[j+1]=arrays[j];
--j;
}
arrays[j+1]=temp;
}
for (int a=0;a<arrays.length;a++){
System.out.println(arrays[a]);
}
}
}
考虑最坏情况,数组是逆序的,最内层循环执行次数是n,n-1,n-2…加起来以后是n(n-1)/2,所以时间复杂度是O(n^2)
2、折半插入
//时间复杂度最坏是O(n^2),最好是O(nlog2^n),平均是O(n^2)
public class HalfInsert {
public static void main(String[] args) {
int[] arrays=new int[]{13,38,49,65,76,97,27};
for(int i=0;i<arrays.length;i++){
int low=0;
int high=i-1;
int temp=arrays[i];
while(low<=high){
int middle=(high+low)/2;
if(arrays[middle]>temp){
high=middle-1;
}else{
low=middle+1;
}
}
for(int j=i-1;j>high;j--){
arrays[j+1]=arrays[j];
}
arrays[high+1]=temp;
}
for(int a=0;a<arrays.length;a++){
System.out.println(arrays[a]);
}
}
}
3、希尔排序
//最佳情况:T(n) = O(nlogn)。最坏情况:T(n) = O(n)。平均情况:T(n) = O(nlogn)
public class ShellSort {
public static void main(String[] args) {
int[] array=new int[]{49,38,65,97,76,13,27,49,55,4};
int gap=array.length/2;
int i,j,temp;
while(gap>=1){
for(i=gap;i<array.length;i++){
temp=array[i];
j=i-gap;
while(j>=0 && array[j]>temp){
array[j+gap]=array[j];
j=j-gap;
}
array[j+gap]=temp;
}
gap=gap/2;
}
for(int index=0;index<array.length;index++){
System.out.println(array[index]);
}
}
}
4、冒泡排序
//平均时间复杂度是O(n^2)
public class BubbleSort {
public static void main(String[] args) {
int[] array=new int[]{49,38,65,97,76,13,27,49,55,4};
int i,j,temp;
for (i=0;i<array.length-1;i++){
for(j=0;j<array.length-1-i;j++){
if(array[j]>array[j+1]){
temp=array[j];
array[j]=array[j+1];
array[j+1]=temp;
}
}
}
for (int a:array) {
System.out.println(a);
}
}
}
5、快速排序(优化了一部分的)
package sort;
//快速排序的缺点及其优化
/**
* 三种选择基准的方法:
*
* 1、取序列的第一个或者最后一个元素作为基准
*
* 缺点:若数组有序,此时的分割效果非常差,每次划分只能使待排序序列减一,快速排序沦为冒泡排序,时间复杂度O(N2)数据量特别大时,会出现栈溢出的情况
*
* 2、随机选取基准:取待排序列中任意一个元素作为基准,将选择好的基准元素与low位置元素互换位置,此时就可以和普通的快排一样调用划分函数。
*
* 缺点:数字全相等的情况下,时间复杂度依然是O(n2)。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。
*
* 3、三数取中
*
* 一般是取low、middle、high三个位置上元素的中值作为基准
*
* 缺点:同样处理不了重复数组
* 4.当待排序序列长度分割到一定大小后,使用插入排序。
* 原因:对于很小和部分有序的数组,快排不如插排好。当待排序序列的长度分割到一定大小后,继续分割的效率比插入排序要差,此时可以使用插排而不是快排
*
* 5.在一次分割结束后,可以把与Key相等的元素聚在一起,继续下次分割时,不用再对与key相等元素分割(还未优化)(处理重复效率极高)
*/
public class FastSortUp {
//三数取中优化
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static void printArr(int[] arr) {
for (int anArr : arr) {
System.out.print(anArr + " ");
}
}
private static int partition(int[] arr, int left, int right) {
// 采用三数中值分割法,找出一次排序后mid的值作为分割点。
int mid = left + (right - left) / 2;
// 保证左端较小
if (arr[left] > arr[right])
swap(arr, left, right);
// 保证中间较小
if (arr[mid] > arr[right])
swap(arr, mid, right);
// 保证中间最小,左右最大
if (arr[mid] > arr[left])
swap(arr, left, mid);
int pivot = arr[left];
while (right > left) {
// 先判断基准数和后面的数依次比较
while (pivot <= arr[right] && left < right) {
--right;
}
// 当基准数大于了 arr[right],则填坑
if (left < right) {
arr[left] = arr[right];
++left;
}
// 现在是 arr[right] 需要填坑了
while (pivot >= arr[left] && left < right) {
++left;
}
if (left < right) {
arr[right] = arr[left];
--right;
}
}
arr[left] = pivot;
return left;
}
private static void quickSort(int[] arr, int left, int right) {
if (arr == null || left >= right || arr.length <= 1)
return;
if(right-left+1<10){
insertSort(arr,left,right);
}
int mid = partition(arr, left, right);
quickSort(arr, left, mid);
quickSort(arr, mid + 1, right);
}
public static void insertSort(int[] arr,int low,int height)
{
for(int i=low+1;i<=height;i++)
{
int tmp=arr[i];
int j;
for(j=i;j>low&&arr[j-1]>tmp;j--)
{
arr[j]=arr[j-1];
}
arr[j]=tmp;
}
}
public static void main(String[] args) {
int[] arr = {1,5,4,8,3,6,7,2,12,9,34,27,54,43,18,20,-1,-5,13,17,-22,7,2,11,66,78,103};
quickSort(arr, 0, arr.length - 1);
printArr(arr);
}
}
6、简单选择排序
public class SimpleChooseSort {
public static void main(String[] args) {
int[] array=new int[]{49,68,65,97,76,13,27,49};
int i=0,j=0,index=0,temp;
while(i<array.length){
index=i;
for(j=i+1;j<array.length;j++){
if(array[index]>array[j]){
index=j;
}
}
temp=array[i];
array[i]=array[index];
array[index]=temp;
i++;
}
for(int a=0;a<array.length;a++){
System.out.println(array[a]);
}
}
}
7、堆排序
package sort;
//时间复杂度为O(nlogn)
public class HeapSort {
public static void main(String[] args) {
int[] arr = {16, 7, 3, 20, 17, 8};
heapSort(arr);
for (int i : arr) {
System.out.print(i + " ");
}
}
/**
* 创建堆,
* @param arr 待排序列
*/
private static void heapSort(int[] arr) {
//创建堆
for (int i = (arr.length - 1) / 2; i >= 0; i--) {
//从第一个非叶子结点从下至上,从右至左调整结构
adjustHeap(arr, i, arr.length);
}
//调整堆结构+交换堆顶元素与末尾元素
for (int i = arr.length - 1; i > 0; i--) {
//将堆顶元素与末尾元素进行交换
int temp = arr[i];
arr[i] = arr[0];
arr[0] = temp;
//重新对堆进行调整
adjustHeap(arr, 0, i);
}
}
/**
* 调整堆
* @param arr 待排序列
* @param parent 父节点
* @param length 待排序列尾元素索引
*/
private static void adjustHeap(int[] arr, int parent, int length) {
//将temp作为父节点
int temp = arr[parent];
//左孩子
int lChild = 2 * parent + 1;
while (lChild < length) {
//右孩子
int rChild = lChild + 1;
// 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点
if (rChild < length && arr[lChild] < arr[rChild]) {
lChild++;
}
// 如果父结点的值已经大于孩子结点的值,则直接结束
if (temp >= arr[lChild]) {
break;
}
// 把孩子结点的值赋给父结点
arr[parent] = arr[lChild];
//选取孩子结点的左孩子结点,继续向下筛选
parent = lChild;
lChild = 2 * lChild + 1;
}
arr[parent] = temp;
}
}
8、二路归并排序
package sort;
public class TogetherSort {
/**
* 归并排序
* @param arr
* @param left
* @param right
*/
public static void mergeSort(int[] arr, int left, int right) {
if(null == arr) {
return;
}
if(left < right) {
//找中间位置进行划分
int mid = (left+right)/2;
//对左子序列进行递归归并排序
mergeSort(arr, left, mid);
//对右子序列进行递归归并排序
mergeSort(arr, mid+1, right);
//“合”。 进行归并
merge(arr, left, mid, right);
}
}
/**
* 进行归并
* @param arr
* @param left
* @param mid
* @param right
*/
private static void merge(int[] arr, int left, int mid, int right) {
int[] tempArr = new int[arr.length];
int leftStart = left;
int rightStart = mid+1;
int tempIndex = left;
while(leftStart <= mid && rightStart <= right) {
if(arr[leftStart] < arr[rightStart]) {
tempArr[tempIndex++] = arr[leftStart++];
} else {
tempArr[tempIndex++] = arr[rightStart++];
}
}
while(leftStart <= mid) {
tempArr[tempIndex++] = arr[leftStart++];
}
while(rightStart <= right) {
tempArr[tempIndex++] = arr[rightStart++];
}
while(left <= right) {
arr[left] = tempArr[left++];
}
}
private static void showArr(int[] arr) {
for(int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
public static void main(String[] args) {
int[] arr = {4, 2, 6, 1, 3, 8, 5, 9};
/*
* 归并排序
* 对上下限值分别为0和arr.length-1的记录序列arr进行归并排序
*/
mergeSort(arr, 0, arr.length-1);
showArr(arr);
}
}