sk-learn的模型选择可以做什么?
scikit-learn(简称 sklearn)中的模型选择模块 (sklearn.model_selection) 提供了一系列工具,用于帮助开发者选择合适的模型及其超参数。这些工具可以帮助避免过拟合,提升模型的泛化能力,并确保模型在未知数据上的表现良好。以下是 sklearn.model_selection 模块的主要功能:
1. 数据集划分(Data Splitting)
train_test_split
将数据集划分为训练集和测试集。这有助于评估模型在未见过的数据上的性能。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
2. 交叉验证(Cross-Validation)
K折交叉验证(KFold)
将数据集分割为K个子集,在K次迭代中每次使用一个子集作为测试集,其余子集作为训练集。
from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
for train_index, test_index in kf.split(X)