【机器学习】sk-learn的模型选择 (sklearn.model_selection) 可以做什么?


scikit-learn(简称 sklearn)中的模型选择模块 (sklearn.model_selection) 提供了一系列工具,用于帮助开发者选择合适的模型及其超参数。这些工具可以帮助避免过拟合,提升模型的泛化能力,并确保模型在未知数据上的表现良好。以下是 sklearn.model_selection 模块的主要功能:

1. 数据集划分(Data Splitting)

train_test_split

将数据集划分为训练集和测试集。这有助于评估模型在未见过的数据上的性能。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2. 交叉验证(Cross-Validation)

K折交叉验证(KFold)

将数据集分割为K个子集,在K次迭代中每次使用一个子集作为测试集,其余子集作为训练集。

from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
for train_index, test_index in kf.split(X)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值