知识图谱表示学习-HolE算法

本文介绍了Holographic Embeddings (HolE)模型,它是RESCAL和DistMult的简化版本,利用循环运算处理不对称关系,以高效表达能力和计算性能,适用于多关系数据的分析和链接预测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HolE

(这是一篇小白入门笔记,请勿转载,感谢指正!)

Holographic Embeddings(HolE)是一种基于语义相似度的模型。

RESCAL

实体是由复杂多重关系相互联系在一起的,实体之间和关系之间直接的关联关系不仅对其本身起作用,还可以发生传递得到新的关系。为了检测出这些关系,参照集体分类(collective classification)的方法,提出了集体学习(collective learning)对实体进行分析,以充分利用相关实体提供的信息。这一方法还被用于预测链接等学习任务。为了进行对多关系数据的集体学习,RESCAL 提出了用一种张量分解的方式来实现实体分析。HolE是 RESCAL 模型和它的简化版本 DisMult 模型的结合,兼顾了表达能力和效率。

RESCAL 模型提出用一个三阶张量来表示关系数据。对一个正确的三元组 (h, r, t),h, r, t 的 id 分别为 i, k, j,在张量 X 中表示为 Xi jk = 1,若三元组是错误的或未知的,则 Xi jk 被置零。张量 X 的每个分片可以按照以下形式分解:
在这里插入图片描述
A 是一个 nr 的矩阵,B 是 rr 的非对称矩阵,通过最小化函数
在这里插入图片描述
在这里插入图片描述
来求解 A 和 Rk。A 是包含了实体潜在信息的表示,Rk 是在第 k 个关系中这些潜在信息之间的作用关系。该分解方式能够解出实体唯一对应的潜在特征矩阵,且在计算过程中保持了每个分片上实体潜在特征的相互依赖关系,每个实体也可以通过潜在特征的唯一性找到和他有依赖关系的实体。因此,该方法优于其他的诸如 CP 等的张量分解方法。同时,所有直接和间接的关系都对 A 的第 i 行 ai 的计算
结果产生决定性的影响。每个关系对应的关系表示矩阵 Rk 都表达出了实体的潜在特征是如何作用于不同的关系之中的,以及通过 Rk 的不对称性,可以分别出起作用的潜在特征所属的实体是作为头实体还是作为尾实体出现的。上述分解的方法是用交替最小二乘法不断迭代来实现的,除此之外还可以构造神经网络来进行学习,对给定一个三元组 (h, r, t ),RESCAL 定义得分函数为一个双线性函数:
在这里插入图片描述
神经网络的第一层将一对输入的实体投影到低维的向量空间,第二层将这两个向量组合起来通过计算得分函数的值进行比较。具体的训练过程是。RESCAL 在各数据集上的结果和性能都比较好,表明了张量分解和 RESCAL 算法在关系学习上的适用性。

DistMult

DistMult 算法是 RESCAL 的简化版,也是通过神经网络来实现。它们在模型上相似,但在关系表示和实体表示上有所不同,减少了大量参数。
DistMult 将关系矩阵 Mr 设为对角矩阵,得分函数为 f(h, t) = hT diag®t = [r]i · [h]i · [t]i,仅仅刻画出在同纬度下的 h 和 t 之间的相互关系,且由于diag 为对角矩阵,恒有 hT diag®t = tT diag®h 成立,因此该模型只适用于描述实体间的对称关系。

HolE

基于此,HolE 沿用了 DistMult 中对角阵的简化,但对实体进行嵌入时采用循环运算,定义得分函数为:
在这里插入图片描述
HolE 能够对不对称关系进行建模,计算高效,表达能力也较丰富。

### 回答1: 1. 关系抽取(Relation Extraction) 2. 关系分类(Relation Classification) 3. 关系聚合(Relation Aggregation) 4. 关系预测(Relation Prediction) 5. 关系推理(Relation Inference) 6. 关系推断(Relation Deduction) 7. 关系推荐(Relation Recommendation) 8. 关系检索(Relation Retrieval) 9. 实体识别(Entity Recognition) 10. 实体消歧(Entity Disambiguation) 11. 实体关系链接(Entity Relation Linking) 12. 实体聚类(Entity Clustering) 13. 实体推理(Entity Inference) 14. 实体分类(Entity Classification) 15. 属性抽取(Attribute Extraction) 16. 属性预测(Attribute Prediction) 17. 属性推理(Attribute Inference) 18. 属性分类(Attribute Classification) 19. 属性推荐(Attribute Recommendation) 20. 属性推断(Attribute Deduction) ### 回答2: 1. TransE(Translation-based Embedding Model): 一种基于翻译关系的模型,用于学习实体和关系之间的嵌入表示。 2. TransH(Translation-based Embedding Model with Heterogeneous Spaces): TransE的改进版本,引入了关系特定的超平面,以更准确地建模实体和关系之间的语义关联。 3. TransR(Translation-based Embedding Model with Relation-specific Embeddings): TransE的进一步改进,通过引入关系特定的嵌入空间来处理原始模型中存在的一对多和多对一关系问题。 4. TransD(Translation-based Embedding Model with Relational Dependencies): TransE的另一种扩展,通过引入关系特定的变换矩阵来建模实体和关系之间的依赖关系。 5. RESCAL(RElational model with Semi-Continuous Embeddings and Compositional Logic): 一种基于矩阵分解的模型,通过分解关系张量来学习实体和关系之间的表示。 6. DistMult(Distributed Multi-relationships model): 一种基于张量分解的模型,通过特征向量间的点积来判断事实的置信度。 7. ComplEx(Complex Embeddings): 一种基于复数嵌入的模型,将实体和关系都表示为复数向量,通过复数运算来进行语义推理。 8. ConvE(Convolutional 2D Knowledge Graph Embeddings): 一种基于卷积神经网络的模型,通过卷积操作将嵌入向量转化为二维图像,以捕捉实体和关系之间的局部模式。 9. RotatE(Rotation-based Embedding): 一种基于旋转变换的模型,通过将关系嵌入向量进行旋转操作,来建模实体和关系之间的多种语义关系。 10. HolE(Holographic Embeddings): 一种基于张量张量分解的模型,通过张量外积操作来计算实体和关系之间的匹配度。 11. KG2E(Knowledge Graph Embedding with Entity Descriptions): 一种基于图神经网络的模型,通过结合实体描述和关系属性来学习实体和关系之间的嵌入表示。 12. ConvKB(Convolutional Neural Networks for Knowledge Base Completion): 一种基于卷积神经网络的模型,通过卷积操作来学习实体和关系之间的表示。 13. SimplE(Simplifying Knowledge Graphs into Simple Embeddings): 一种基于正交约束的模型,通过引入正交变换来简化知识图谱的表示。 14. SSP(Semantic Space Projection): 一种基于语义空间投影的模型,通过学习实体和关系之间的线性变换来建模知识图谱。 15. NTN(Neural Tensor Networks): 一种基于神经张量网络的模型,通过张量运算来建模实体和关系之间的复杂关系。 16. RDIG(Relational Deep Intelligence Group): 一种基于深度学习的模型,通过多层神经网络来学习实体和关系之间的嵌入表示。 17. NSC(Neural Semantic Composition): 一种基于神经网络的模型,通过组合实体和关系之间的嵌入向量来生成知识图谱的语义表示。 18. IPTransE(Improved Path-based TransE): TransE的进一步改进版本,通过加入路径信息来改善实体和关系之间的嵌入学习。 19. GPE(Graph Pattern Extractor): 一种基于图模式提取的算法,通过分析知识图谱中的子图来挖掘实体和关系之间的高阶关系。 20. RDF2Vec(RDF to Vector): 一种基于Word2Vec的算法,通过将RDF图谱数据转化为连续向量,来学习实体和关系之间的表示。 ### 回答3: 以下为20个比较流行的知识图谱算法模型: 1. TransE:基于关系三元组的知识图谱表示学习模型,通过学习实体和关系的向量表示来捕捉关系的语义。 2. TransH:在TransE的基础上引入超平面来建模关系,以更好地表示实体之间的关系。 3. TransR:通过学习实体和关系的映射矩阵来进行关系的建模,提高了关系的表示能力。 4. TransD:在TransR的基础上引入动态实体描述向量,通过描述实体在不同关系下的特征来学习知识图谱表示。 5. RESCAL:通过建模关系张量来进行知识图谱表示学习,能够捕捉实体和关系之间的复杂非线性关系。 6. ComplEx:基于复数张量分解的知识图谱表示学习模型,能够更好地处理关系的对称性和传递性。 7. HolE:通过利用对称性和循环性质,将关系表示为低维的向量,提高了知识图谱表示的效果。 8. ConvE:将知识图谱表示学习问题转化为卷积神经网络的学习问题,能够在保证语义表示的情况下减少参数量。 9. STransE:通过引入关系路径信息,改进了TransE模型,提高了关系的表示能力。 10. R-GCN:在图卷积网络的基础上,利用关系的传播能力对知识图谱进行表示学习。 11. KG2E:通过引入关系属性向量,捕捉实体和关系之间的语义信息,提高了知识图谱的表示能力。 12. TransGAN:将生成对抗网络应用于知识图谱表示学习,能够生成更真实的知识图谱实体和关系。 13. ComplexE:基于复数表示的知识图谱嵌入模型,能够更好地处理复杂关系和多对一关系。 14. PTransE:通过引入关系路径信息和预训练的实体向量,改进了TransE模型,提高了知识图谱的表示能力。 15. ConvKB:将知识图谱表示学习问题转化为卷积神经网络的二分类问题,提高了知识图谱表示的效果。 16. TuckER:利用张量分解技术进行知识图谱表示学习,提高了关系的建模能力。 17. BootEA:利用知识图谱中的边缘实体(bridge entity)进行表示学习,提高了知识图谱表示的效果。 18. SimplE:将知识图谱表示问题转化为线性关系预测问题,提高了表示学习的效率和准确性。 19. KALE:综合考虑知识图谱中的拓扑结构和语义信息,进行表示学习和关系预测。 20. ProjE:通过投影矩阵的方式学习知识图谱表示,提高了关系的表示能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值