Rescal 和 Distmult,知识图谱嵌入(KGE)论文阅读

Rescal模型是一种基于三维张量分解的知识图谱嵌入方法,通过将关系视为矩阵切片来表示实体之间的交互。DistMult作为其简化版,仅使用对角矩阵来建模关系。本文探讨了这两种模型的基本思想,分解过程以及在知识图谱表示学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rescal 模型

主要思想:三维张量分解


参考:
双线性模型(一)(RESCAL、LFM、DistMult)
知识图谱嵌入(KGE):方法和应用的综述


张量是多维数组,其中零阶张量是标量(scalar),一阶张量是一个向量(vector),二阶的张量是矩阵(matrix),三阶及三阶以上的就是我们通常所说的张量,也叫高阶张量。数据的的维度被称为张量的阶。它可以看成是向量和矩阵在多维空间中的推广。如下图定义一个的三维张量,m 代表关系数,n 代表实体数

在这里插入图片描述


三维张量分解思想: 每个关系对应于 张量(三维) 中的一个 切片(二维),即一个矩阵,如下图,其实相当于表示图的邻接矩阵,存储各对实体是否有这样的关系,有则表示为 1,没有则表示为 0

在这里插入图片描述
对三维张量(下图左式,这个 n×n 的矩阵如上图,代表实体与实体中有无指定关系的存在)进行分解(下图右式):

分解后的 A 是每个实体的潜在语义表示,每行代表一个实体,r指定关系的维度,也即语义表示。矩阵 Rk(r × r) 建模 指定关系中 的实体间的语义的交互。如此,三维张量就能一片片(每个关系都照顾到)进行分解

在这里插入图片描述
示意图:

在这里插入图片描述


总共有多少个关系,和式中的 k 就从1累加到多少,因此有下式:

论文中通过最小化函数来求得 Rk 和 A

在这里插入图片描述


其实等价转化为最小化如下函数来进一步求解:

在这里插入图片描述


Distmult 模型

基于Rescal模型进行的改进,个人理解如下,欢迎批评指正

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白白净净吃了没病

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值