题目
给定一个二维数组map,含义是一张地图,例如如下,矩阵:
-2 -3 3
-5 -10 1
0 30 -5
游戏规则如下:
骑士从左上角出发,每次只能向右或者向下走,最后到达右下角见到公主。
地图中每个位置的只代表骑士要遭遇的事。如果是负数,表示此处有怪兽,要让骑士损失血量。如果是非负数,表示此处有血瓶,能让骑士回血。
骑士从左上角到右下角的过程,走到任何一个位置,血量都不能少于1。
为了保证骑士能顺利见到公主,初始血量至少是多少?根据map,返回初始血量。
基本思路
首先生成和map一样大的矩阵dp,dp[i][j]表示如果骑士要走上位置(i,j),并且从该位置选择一条最优的路径,所需要的血量最少是多少。本题相当于是求dp[0][0]的值,所以,采用倒着填表的方式便可以得到最终结果。dp[i][j]的计算方式如下:
矩阵的右下角的位置是骑士到达的最后位置,骑士经过这里的时候只要血量不少于1即可,如果该位置是血瓶,即map[2][2] >= 0,则dp[2][2] == 1即可,否则dp[2][2] == -map[2][2] + 1。
矩阵的最后一列,表示骑士只能向下走,所以此时只要满足在当前位置(i,col-1) (col表示矩阵的列数)加上血或者扣完血之后的血量等于dp[i+1][col-1]即可。
矩阵的最后一行,表示骑士只能向右走,只要满足在当前位置(row-1,j)(row表示矩阵的行数)加上血或者扣完血之后的血量等于dp[row-1][j+1] 即可。
骑士在矩阵的其他位置,都有向右或者向下两种选择,只要选择需要血量最少的一个即可
def minHP(m):
"""经典动态规划方法"""
if m == None or len(m) == 0 or len(m[0]) == None or m[0] == None:
return 1
row = len(m)
col = len(m[0])
dp = [[0 for i in range(col)] for j in range(row)]
if m[-1][-1] < 0:
dp[-1][-1] = -m[-1][-1] + 1
else:
dp[-1][-1] = 1
for i in range(row-2,-1,-1):
dp[i][col-1] = max(dp[i+1][col-1]-m[i][col-1],1)
for j in range(col-2,-1,-1):
dp[row-1][j] = max(dp[row-1][j+1]-m[row-1][j],1)
for i in range(row-2,-1,-1):
for j in range(col-2,-1,-1):
right = max(dp[i][j+1]-m[i][j],1)
down = max(dp[i+1][j]-m[i][j],1)
dp[i][j] = min(right,down)
return dp[0][0]