-------让系统认识我-------
-------人脸识别系统-------
---VERSION2:基于tensorflow_cnn来做模型
---背景:
上一篇我的github:zhenghaozhang(https://github.com/zhenghaozhang123/dlib_face_recognize)讲了利用dlib来进行人脸识别的例子,列举了三个缺点。
此处模型解决了上一篇讲到的两个缺点:
1.判定是否同一个人的阈值难以确定。
2.模型适合小型人脸数据库,一旦人脸数据库人数过多,此处的阈值更加难以确定。
---优点:
1.不再利用dist距离法,也就不再需要去定义阈值。因为上一篇我写到,阈值的值非常难定,特别是当人脸数据库人数多时,dist这个值是不稳定,甚至没办法确定的。 因此我们利用cnn的模型,将思路从两张图片的dist距离转换为“是非”问题,即二分类问题。(1.是我数据库的人。0.不是我数据库的人)。从而解决阈值选择的困难。
2.模型可以是多样本模型,解决了DLIB存在的小样本模型的局限。上一篇我讲到,当人脸数量一旦增加时,dist将是不稳定的。而用tensorflow的cnn模型,我们可以将 我们需要存进我们人脸数据库的人脸存进数据库,并将其定义为Label 1.训练时将不属于人脸数据库的数据定义为LABEL 0。因此成功将问题转换为二分类问题。相信 二分类问题大家很熟悉了。
---缺点:
当我们完成训练好的模型之后,一旦我们要往人脸数据库中增加新成员,则需要重新去跑模型(因为模型需要去记住新的成员,所以模型需要重新训练)。我们知道在现实 中,训练一个好的模型参数出来是需要花费大量时间的,如果一旦增加新成员,便重新训练模型,这个成本是相当高的,也不符合实际。 (此处的缺点解决方案,我将在下一篇进行讲解)
此处为版本2.通过tensorflow_cnn,将定阈值问题转换为二分类问题。
此处案例为了简便讲解和与上一篇的案例做对比,依旧以识别本人项目为主。
现在开始我们的代码学习吧。
get_my_faces.py -----通过电脑摄像头实现对自己人脸的抓取,并储存在个人人脸数据库中,以备后面进行识别。
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 30 15:22:58 2018
@author: MR.ZHENG
"""
import cv2
import dlib
import os
import sys
import random
output_dir = "D:/Git_code/tensorflow_dlib_face_recognize/my_face/"
size = 64
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 改变图片的亮度与对比度,让图片更加易于识别
def relight(img, light=1, bias=0):
w = img.shape[1]
h = img.shape[0]
#image = []
for i in range(0,w):
for j in range(0,h):
for c in range(3):
tmp = int(img[j,i,c]*light + bias)
if tmp > 255:
tmp = 255
elif tmp < 0:
tmp = 0
img[j,i,c] = tmp
return img
#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
camera = cv2.VideoCapture(0)
index = 1
while True:
if (index <= 10000):
print('Being processed picture %s' % index)
# 从摄像头读取照片
success, img = camera.read()
# 转为灰度图片
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用detector进行人脸检测
dets = detector(gray_img, 1)
for i, d in enumerate(dets):
x1 = d.top() if d.top() > 0 else 0