火灾检测——相关数据集

目录

1.1 MIVIA Fire Detection Dataset 

1.2 FireNet-LightWeight-Network-for-Fire-Detection

1.3 Fire Flame Dataset(Deep Quest AI)

2.1 FIRESENSE Database

2.2 furg-fire-dataset-master (Hüttner et al.)

2.3 CVPR Lab ——KMU Fire and Smoke database

2.4 BoWFireDataset (Chino et al.)

2.5 Sharma's Dataset (Sharma et al.)


【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

1.1 MIVIA Fire Detection Dataset 

网址:

Sample Fire and Smoke Video Clips

数据描述:

12 个火的视频,无标注,还有其他的烟雾视频

论文:

Improving fire detection reliability by a combination of videoanalytics. In: Image analysis and recognition

Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion

1.2 FireNet-LightWeight-Network-for-Fire-Detection

网址:

https://github.com/arpit-jadon/FireNet-LightWeight-Network-for-Fire-Detection

数据描述:

46 个火的视频,16 个非火的视频,160 张非火的图片,无标注

论文:

Firenet: a specialized lightweight fire & smoke detection model for real-time iot applications

1.3 Fire Flame Dataset(Deep Quest AI)

网址:

https://github.com/DeepQuestAI/Fire-Smoke-Dataset

数据描述:

Train: 火图片 900、中性图 900、烟雾图 900

Test:火图片 100、中性图 100、烟雾图 100

提出单位:Deep Quest AI

2.1 FIRESENSE Database

网址:

FIRESENSE database of videos for flame and smoke detection | Zenodo

数据描述:

火焰:11 个火的视频,16 个非火的视频

烟雾:13 个烟雾视频,9 个非烟雾视频

论文:

  1. K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, "Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection", IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), Vol. 25, No. 2, February 2015, pp. 339-351.

2.2 furg-fire-dataset-master (Hüttner et al.)

网址:

https://github.com/steffensbola/furg-fire-dataset

数据描述:

23 个视频,带有标注文件,标注信息为(int x, int y, int width, int height)

论文:

2017

First response fire combat: Deep leaning based visible fire detection

V. Hüttner, C. R. Steffens and S. Silva da Costa Botelho, "First response fire combat: Deep leaning based visible fire detection," 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, 2017, pp. 1-6, doi: 10.1109/SBR-LARS-R.2017.8215312.

2016

A Texture Driven Approach for Visible Spectrum Fire Detection on Mobile Robots

2015

An Unconstrained Dataset for Non-Stationary Video Based Fire Detection

2016

Non-stationary VFD Evaluation Kit: Dataset and Metrics to Fuel Video-Based Fire Detection Development

2.3 CVPR Lab ——KMU Fire and Smoke database

网址:

Computer Vision and Pattern Recognition Laboratory Homepage

数据描述:

Wildfire_smoke:4 个视频

Smoke_flame_like_moving_object:10 个视频

Indoor_outdoor(short_distance)smoke:2 个视频

Indoor_outdoor(short_distance)flame:22 个视频

相对比较模糊,历史比较悠久

单位:Computer Vision and Pattern Recognition Laboratory, Keimyung University, Korea

论文:Byoung Chul Ko, Jun-Yong Kwak, Jae-Yeal Nam, "Wildfire Smoke Detection using Temporal-Spatial Features and Random Forest Classifiers," Optical Engineering, Vol. 51, No. 01. ,pp.017208-1 - 017208-10, Jan. 2012.

2.4 BoWFireDataset (Chino et al.)

网址:

gbdi / BowFire Dataset / Downloads — Bitbucket

数据描述:

有两个数据集

trainset:80 张火图,80 张正常图、80 张烟雾图

dataset:119 张火图(带二值图)、107 张非火图(带二值图)

论文:BoWFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis. [Daniel Y. T. Chino and Letricia P. S. Avalhais]

2.5 Sharma's Dataset (Sharma et al.)

链接: https://github.com/UIA-CAIR/Fire-Detection-Image-Dataset

训练集:59 火图,490 非火图(共 549 张图)

测试集:51 火图、51 非火图(共 102 张图)

论文:Deep Convolutional Neural Network for Fire Detection in Images

【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

### 解决WSL重启后卡死的问题 当遇到Windows Subsystem for Linux (WSL) 重启后卡死的情况时,可以尝试以下几种解决方案: #### 方法一:终止并重新启动特定发行版 对于希望关闭某个WSL发行版而不影响其他正在运行的WSL实例的情形,可以通过`wsl --terminate <distribution name>`来实现[^3]。这有助于清理可能引起冻结的状态。 #### 方法二:全局停止所有WSL进程 如果多个WSL发行版本均出现问题或者不确定具体哪个发行版导致了问题,则可采用更为彻底的方式——通过命令`wsl --shutdown`一次性结束所有WSL会话。此操作相当于强制下线所有的Linux环境,之后再正常打开即可恢复正常工作状态[^2]。 #### 方法三:更新WSL及相关组件 有时,系统或软件本身的缺陷可能是造成此类现象的原因之一。因此建议定期检查是否有新的补丁发布,并及时升级到最新版本。特别是针对Windows操作系统以及所使用的Ubuntu镜像文件等资源进行更新。 ```bash # 更新包列表和现有软件包至最新版本 sudo apt update && sudo apt upgrade -y ``` 此外,在某些情况下,切换到较新版本的WSL2也可能带来性能上的改进和支持更多特性,从而减少发生异常的概率。 #### 方法四:调整内存分配和其他设置 适当增加分配给WSL虚拟机的RAM大小或其他资源配置参数,也可以有效缓解因资源不足而导致的服务响应缓慢甚至停滞不前的现象。可以在`.wslconfig`配置文件中定义这些选项。 ```ini [wsl2] memory=4GB ; 分配至少4G以上的物理内存供其使用 processors=2 ; 设置CPU核心数为双核以上 swap=8GB ; 启用交换空间以防止OOM错误的发生 ``` 上述措施能够帮助解决大部分由不同原因引起的WSL重启过程中出现的卡顿状况。当然,具体情况还需结合实际场景灵活应对。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要好好学习才能天天向上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值