1.时间序列相关概念
时间序列数据是指按时间顺序关于事件变化发展的过程记录,它是目标对象的按照一定时间顺序的观测记录值的序列;其保存了观测数据的时间结构性。因此时间序列常常被当成一个整体进行研究分析,而不是一个个独立的数值。研究时间序列不仅仅要关注其记录数值本身,还需要解析其瞬时数据与瞬时数据之间的时间相关性。
2.时间序列的相关特性
趋势性:趋势反应该时间段内数据变化的方向,比如整体趋势是趋于上升、或是下降、或是平稳。
周期性:正常状态下时间序列数据是具有周期性的,其周期根据不同的场景表现不一样;
平稳性:平稳性是指时间序列的的某些统计特征在所关注的时间内是相对稳定的,这个性质是很多时间序列相关任务所关注的。
对称性:时间序列数据在较长的时间段内经常能反映出时间段内的对称性;
海量性:数据量大,无时无刻不在产生新的数据。
3.时间序列的数据特征
平均值:有算术平均值、几何平均值、均方根平均值、调和平均值、加权平均值等,能够反映数据趋势的一项统计性指标。
标准差:是方差的算术平方根,能够反映数据的离散程度。
最值:已知数据中的最大(小)值,反映该段数据的上(下)限。
百分位数:将数据进行从小到大排序,然后计算累计百分位,则某一百分位对应的数值就是该百分位的百分位数。
自相关函数:是一个信号于其自身在不同时间点的互相关,即两次观测之间的相似度对它们之间的时间差的函数。
过零率:指一个信号的符号变化的比率,例如信号从正到负;
频域分析(傅里叶+小波)
4.预处理方法
滑动平均
高斯滤波