关于极限的有界性的理解

数列与函数极限的有界性的理解

数列的有界性与函数的有界性一个是非局部的一个是局部的,究其主要原因是
数列的数是有限的,我们完全把他某点数列完全列举出来,即数列收敛即为有界。
而函数的取值是无限的,所以对于函数极限来说只能是局部的,并不能扩大到整个函数的范围,因为极限本身就是一个穷举的概念,你都不能穷举完所有的取值,怎么能够扩大他的范围呢。
我们再具体理解一下函数的有界性:
例如f(x)=1/x这个函数,x=0.1时,这个函数必然有极限,而且是10,而在他的一个邻域内,例如(0.01,1)也必然是有界的,取值为(1,100),但是,如果你想将他扩大到整个函数,这就超出了极限本身的能力范畴,例如x=0时,这个函数是无穷的。所以在一定范围内,函数极限可以保证有界性,但是并不能扩大到整个函数范畴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值