FICO评分模型概述
FICO评分模型是由Fair Isaac Company开发的一种用于衡量个人信用风险的数值评估方法,是全球最大的信用评估机构之一FICO公司推出的针对用户各方面情况的评分,其分数范围在300 - 850分之间,分数越高说明客户的信用风险越小 。在美国,信用评级基本都会参考FICO信用分 。
一般地说,如果借款人的FICO分值达到680分以上,贷款方就可以认为借款人的信用卓著,可以毫不迟疑地同意发放款;如果借款人的FICO分值介于620 - 680分之间,贷款方就要作进一步的调查核实,采用其它的信用分析工具,作个案处理;如果分值低于620分,则会考虑拒绝贷款申请。
FICO评分模型具有广泛的影响力,不仅在传统金融领域的风险评估方面起着重要作用,例如银行决定是否发放贷款、确定贷款额度以及利率水平等决策;在新兴的金融科技场景如网络借贷等中,也能够帮助借贷平台对借款者的信用风险进行快速评估,影响借贷交易能否成功达成。同时在一些非传统金融场景的信用评估方面,如租房、办理信用卡等场景下,FICO评分也可以为相关方提供一个快速评估信用风险程度的依据,辅助他们进行决策是否与客户进行信用交易以及交易的条件(如贷款额度、利率等) 。
此外,FICO评分模型是基于逻辑回归模型计算客户的还款能力,预测客户在未来一年的违约概率。模型采集的信息丰富多样,如人口统计学信息(像客户年龄、家庭结构、住房情况、工作类别及时间等)、历史贷款还款信息(如过去6 - 12个月的付款方式、逾期次数等)、历史金融交易信息(如过去6 - 12个月的平均月交易笔数、金额等)、银行征信信息(如过去12个月中新开的账户总数、所有账户的总额度、账户是否逾期等)都是计算FICO评分的自变量,最终通过逻辑回归得到一个信用评分 。
还需要注意的是,不同的FICO评分模型可能针对不同的信用局(Equifax、Experian、TransUnion)而略有差异,所以同一个消费者在这三家信用局的FICO分数可能并不相同 。
FICO评分模型的构成要素
一、信用偿还历史(约占35%)
这是影响FICO得分最重要的因素,主要显示用户的历史偿还情况,帮助贷方了解用户是否存在历史逾期行为。涵盖多个方面内容:
1. 信用账户偿还记录
包括各种信用账户的还款记录,例如信用卡(像Visa、MasterCard、AmericanExpress、Discover等)、零售账户(直接从商户获得的信用)、分期偿还贷款、金融公司账户、抵押贷款等的还款情况。这些多样化的账户类型涵盖了个人信贷消费的主要场景,体现了一个人在各种信贷关系中的履约状况 。
2. 公开记录及支票存款记录
其中包含破产记录、丧失抵押品赎回权记录、法律诉讼事件、留置权记录及判决等信息。这些内容一旦存在,往往是比较严重的信用负面情况。例如破产信息会在信用报告上记录7 - 10年,这期间都会对评分造成严重的负面影响 。
3. 逾期偿还具体情况
详细考虑逾期的天数、未偿还的金额、逾期还款的次数和逾期发生时距现在的时间长度等因素。对FICO评分而言,并非只有完全不逾期才是理想状态,逾期的程度和频率以及距现在的时间等多方面因素都会被衡量。例如,相对于时间较为久远的小额逾期事项,FICO评分会更看重近期发生的大额逾期事项。
二、信用账户数(约占30%)
该因素用来分析对一个用户而言多少个账户算“多”,并不是账户数越多风险就越高,还要考虑一个用户的可用信用度,例如可通过总余额在循环账户总限额比来衡量。在分析信用账户数时,主要考虑账户