DeepSeek Coder 在代码生成和补全中的实现主要依赖于其强大的预训练机制和特定的训练任务设计。以下是具体实现细节:
-
数据准备:
- DeepSeek Coder 使用了大规模的训练数据集,包含2万亿个token,其中87%为代码数据,13%为自然语言数据,支持英语和中文。这些数据涵盖了多种编程语言,确保模型能够理解和生成高质量的代码。
-
模型训练:
- 模型通过项目级别的代码语料库进行预训练,使用16K窗口大小和填空任务(FIM, Fill-in-the-Middle)来增强代码生成和填充能力。这种训练方法使得模型能够更好地理解代码的上下文和结构,从而生成更准确和连贯的代码。
- 模型架构方面,DeepSeek Coder 集成了大小为8的分组查询注意力 (GQA),并使用 FlashAttention v2 来加速注意力机制的计算,提高了训练和推断效率。
-
NLP 集成:
- DeepSeek Coder 集成了自然语言处理技术,能够解析和理解程序员的需求描述。这些需求可以是自然语言形式,模型将通过NLP技术将其转化为机器可理解的形式,从而生成相应的代码。
-
代码生成与补全:
- 在代码生成过程中,模型根据用户输入的指令或代码片段,自动生成完整的代码。这包括生成代码的框架、逻辑和接口等。
- 代码补全功能支持项目级别的代码补全和填充任务。通过16K窗口大小和填空任务,模型能够处理复杂的代码结构和依赖关系,生成更准确和连贯的代码。
- 具体的补全方法包括 PSM(Prefix-Suffix-Middle)模式和 SPM(Suffix-Prefix-Middle)模式。通过调整FIM率(即使用FIM训练样本的比例),可以在FIM任务和传统的下一个token预测任务之间取得平衡。
-
应用与优化:
- DeepSeek Coder 可以通过API调用实现代码完成和代码插入功能,也可以通过聊天模型推理与用户交互。
- 在实际应用中,开发者可以通过调整模型参数和利用现代硬件加速功能ÿ